URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8178-0
Titelangaben
    
  Grüne, Lars ; Sperl, Mario ; Chatterjee, Debasish:
Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2025
    . - 9 S.
    
    
    
     
    
    
    
     
     
  
  
Dies ist die aktuelle Version des Eintrags.
Volltext
| ![[thumbnail of revision_preprint.pdf]](https://epub.uni-bayreuth.de/style/images/fileicons/application_pdf.png) | 
 | ||||||||
| Download (490kB) | 
Angaben zu Projekten
| Projekttitel: | Offizieller Projekttitel Projekt-ID Curse-of-dimensionality-free nonlinear optimal feedback control with deep neural networks. A compositionality-based approach via Hamilton-Jacobi-Bellman PDEs 463912816 | 
|---|---|
| Projektfinanzierung: | Deutsche Forschungsgemeinschaft | 
Abstract
In this paper we give conditions under which control Lyapunov functions exist that can be represented by either piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide a theoretical foundation for recent computational approaches for computing control Lyapunov functions with optimization-based and machine-learning techniques.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
- 
Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks. (deposited 13 Dec 2024 08:16)
- Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks. (deposited 10 Feb 2025 07:35) [Aktuelle Anzeige]
 
 
        
 im Publikationsserver
 im Publikationsserver bei Google Scholar
 bei Google Scholar Download-Statistik
 Download-Statistik