URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8178-0
Titelangaben
Grüne, Lars ; Sperl, Mario ; Chatterjee, Debasish:
Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks.
Bayreuth
,
2025
. - 9 S.
Dies ist die aktuelle Version des Eintrags.
Volltext
![]() |
|
||||||||
Download (490kB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Curse-of-dimensionality-free nonlinear optimal feedback control with deep neural networks. A compositionality-based approach via Hamilton-Jacobi-Bellman PDEs 463912816 |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
In this paper we give conditions under which control Lyapunov functions exist that can be represented by either piecewise affine functions or by neural networks with a suitable number of ReLU layers. The results provide a theoretical foundation for recent computational approaches for computing control Lyapunov functions with optimization-based and machine-learning techniques.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks. (deposited 13 Dec 2024 08:16)
- Representation of practical nonsmooth control Lyapunov functions by piecewise affine functions and neural networks. (deposited 10 Feb 2025 07:35) [Aktuelle Anzeige]