URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7219-8
Titelangaben
Baier, Robert ; Farkhi, Elza:
A Filippov Approximation Theorem for Strengthened One-Sided Lipschitz Differential Inclusions.
Mathematisches Institut, Universität Bayreuth; School of Mathematical Sciences, Tel Aviv University
Bayreuth; Tel Aviv
,
2023
. - 31 S.
Dies ist die aktuelle Version des Eintrags.
Volltext
|
|||||||||
Download (694kB)
|
Angaben zu Projekten
Projektfinanzierung: |
Andere Bayerische Forschungsallianz „BayFor“ Mathematical Institute at Tel Aviv “MINT”, Tel Aviv University, Israel |
---|
Abstract
We consider differential inclusions with strengthened one-sided Lipschitz (SOSL) right-hand sides. The class of SOSL multivalued maps is wider than the class of Lipschitz ones and a subclass of the class of one-sided Lipschitz maps. We prove a Filippov stability theorem for the solutions of such differential inclusions with perturbations in the right-hand side, both of the set of the velocities (outer perturbations) and of the state (inner perturbations). The obtained estimate extends the known Filippov estimate for Lipschitz maps to SOSL ones and improves the order of approximation with respect to the inner perturbation known for one-sided Lipschitz (OSL) right-hand sides from 1/2 to 1.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | publication in a special issue in the journal “Computational Optimization and Applications” in memory of Asen Dontchev
Contents: 1. Introduction 2. Preliminaries and examples 2.1 Notation 2.2 Inner and outer perturbations 2.3 Examples for SOSL/OSL set-valued maps 3. Filippov-type theorems for SOSL maps 3.1 Existence and boundednes of solutions 3.2 Filippov approximation theorem for the SOSL case 3.3 Stability and approximation results 4 Examples of differential inclusions with SOSL right-hand side Conclusions |
Keywords: | differential inclusions; Filippov theorem; (strengthened) one-sided Lipschitz condition; monotonicity; set-valued Euler method; reachable sets |
Fachklassifikationen: | Mathematics Subject Classification Code: 47H05, 47H06, 54C60 (26E25, 34A60, 34A36, 49M25) |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Profilfelder Profilfelder > Advanced Fields Profilfelder > Advanced Fields > Nichtlineare Dynamik Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Modellierung und Simulation (MODUS) Forschungseinrichtungen Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-7219-8 |
Eingestellt am: | 12 Okt 2023 09:00 |
Letzte Änderung: | 12 Okt 2023 09:01 |
URI: | https://epub.uni-bayreuth.de/id/eprint/7219 |
Zu diesem Eintrag verfügbare Versionen
-
A Filippov Approximation Theorem for Strengthened One-Sided Lipschitz Differential Inclusions. (deposited 31 Jul 2023 07:17)
- A Filippov Approximation Theorem for Strengthened One-Sided Lipschitz Differential Inclusions. (deposited 12 Okt 2023 09:00) [Aktuelle Anzeige]