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Abstract

We consider differential inclusions with strengthened one-sided Lipschitz (SOSL) right-
hand sides. The class of SOSL multivalued maps is wider than the class of Lipschitz ones and
a subclass of the class of one-sided Lipschitz maps.

We prove a Filippov stability theorem for the solutions of such differential inclusions with
perturbations in the right-hand side, both of the set of the velocities (outer perturbations) and
of the state (inner perturbations). The obtained estimate extends the known Filippov estimate
for Lipschitz maps to SOSL ones and improves the order of approximation with respect to the
inner perturbation known for one-sided Lipschitz (OSL) right-hand sides from 1

2 to 1.

Keywords: differential inclusions, Filippov theorem, (strengthened) one-sided Lipschitz condi-
tion, monotonicity, set-valued Euler method, reachable sets
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1 Introduction
We consider the differential inclusion

ẋ(t) ∈ F (t, x(t)) for a.e. t ∈ [t0, T ] and x(t0) = x0 , (1)

where F is a set-valued map defined in Rn+1 with nonempty compact (possibly convex) sets in Rn
as values, measurable in the time t for all x and upper semi-continuous (not necessarily continuous)
in the state x for almost all t ∈ I = [t0, T ].
The solutions of the inclusion are absolutely continuous (AC) functions x : I → Rn satisfying (1)
almost everywhere.

Filippov-type approximation theorems for differential inclusions follow the original theorem of
A. F. Filippov [38] and provide approximation estimates for the solutions of (1) in the presence of
perturbations by solutions of the original inclusion (1). The perturbations appear in the right-hand
side F (t, x) and in the initial set and the approximation estimates are given in terms of the norms
of the perturbations. The theorem of Filippov extends classical results on Lipschitz continuity
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of the (unique) solution of an ODE with respect to perturbations in the right-hand side and the
initial point, to Lipschitz stability of the solution set of a differential inclusion. We next recall
the classical theorem of Filippov [38] in a slightly simplified form with a fixed Lipschitz constant
instead of a time-depending one.

Theorem 1.1 (Filippov [38]). Let F : I × Rn ⇒ Rn have closed, nonempty sets as values and
consider an approximate solution y : I → Rn with perturbed initial value y(t0) = y0 and

dist(ẏ(t), F (t, y(t))) ≤ ε(t), (2)

where ε(·) is integrable. For ρ > 0 define the tube Ω(t) = y(t) + ρB1(0) for t ∈ I with x0 ∈ Ω(t0)
and let F be continuous (in the Hausdorff metric in Subsec. 2.1) for all x ∈ Ω(t), t ∈ I as well as
let F (t, ·) be Lipschitz continuous with a constant L ≥ 0, i.e.

dH(F (t, x), F (t, y)) ≤ L|x− y|2 for x, y ∈ Ω(t), t ∈ I. (3)

Then there exists a (neighboring) solution x(·) of (1) on a subinterval of I such that

|y(t)− x(t)|2 ≤ ξ(t) = eL(t−t0)|y0 − x0|2 +
∫ t

t0
eL(t−s)ε(s) ds (4)

|ẏ(t)− ẋ(t)|2 ≤ Lξ(t) + ε(t) a.e.

for t ∈ I with ξ(t) ≤ ρ.

In other words, an approximate solution satisfying (3) with a (time-dependent) ε(·)-violation
of the velocity from the right-hand side F (t, y(t)) is close to a solution x(·) of the unperturbed
system (1) with a distance proportional to the norm of the violation ε(·). The importance of the
theorem is confirmed by its numerous applications related to discrete or other approximations
of differential inclusions (e.g., [35, 36, 65, 34, 29, 30, 28, 31]), relaxation theorems (called also
Filippov-Ważewski theorems) on the density of the solutions set of (1) in the set of relaxed solutions
(e.g., [2, Sec. 2.4], [3, Sec. 10.4], [24, 42, 6, 59, 9]), results on the asymptotic behavior of the
solutions and others (e.g., [36, 32, 33, 31]). That is why extending the scope of the Filippov
theorem beyond the family of Lipschitzian, and beyond the one of continuous maps, is an attractive
field of investigation. For more information we refer to [31, 3, 36, 42].

In this respect see also the discussion in [31] of the theorem of Pliś which states the existence
of a neighboring trajectory for differential inclusions without assuming uniqueness. It is obtained
in [57] for right-hand sides with closed values and integrable Lipschitz modulus and also includes
an error estimate with a maximal solution of a corresponding ODE.

In this paper, for any given solution y(·) of the system with inner and outer vector perturbations
in Rn,

ẏ(t) ∈ F
(
t, y(t) + δ(t)

)
+ ε(t) for a.e. t ∈ [t0, T ] and y(t0) = y0 = x0 + ρ0 , (5)

we want to obtain the existence of a solution of the original system (1) such that the distance be-
tween these two solutions is estimated by some norms of the measurable perturbations δ(·), ε(·), ρ0

and is small if the perturbations are small.
Our motivation for representing the perturbed system in form (5) and the importance of inner

perturbations δ(·), which is essential when F is not continuous with respect to the state variable,
are discussed in details in Subsec. 2.2.

Removing the continuity of F with respect to the state variable may be problematic, since then
the continuous dependence of the solutions with respect to perturbations in the initial condition
or the right-hand side may be lost. Fortunately, in some cases the continuous dependence is
preserved, possibly in a Hölder form, as in the case of one-sided Lipschitz (OSL) mapping F .

The OSL property of single-valued maps in Rn or in Hilbert spaces is known in numerical
analysis as a generalization of the Lipschitz continuity ([22, 4], [43, Sec. IV.12], [15]).
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An early and restrictive extension of the OSL condition to set-valued maps is defined in [37]
and [45, 50]. This condition, equivalent to the monotonicity of the map µI − F for some µ ∈ R,
may be satisfied only by maps that are a.e. single-valued [68, 47].

A weaker abstract version of the OSL condition in Banach spaces is formulated in [23], and its
most popular form for multimaps in Rn and Hilbert spaces is coined in [29]. More details on OSL
maps may also be found in [25, 27].

Definition 1.2 ([29]). The set-valued map F defined from a domain [t0, T ]×D in Rn+1 to Rn is
called One-Sided Lipschitz (OSL) in D with constant µ ∈ R if for a.e. t ∈ [t0, T ], every x, y ∈ D
and every v ∈ F (t, x) there is w ∈ F (t, y) such that

〈x− y, v − w〉 ≤ µ|x− y|22 , (6)

where | · |2 denotes the Euclidean norm in Rn.

The OSL property describes a large family of mappings which contains both Lipschitz and
dissipative maps (see also Sec. 2 for examples and a comparison to other known classes of Lipschitz-
like maps).

One should note that the constant µ may be zero or even negative, in contrast to the case of
Lipschitz continuity. The OSL systems with negative OSL constant have a strongly invariant set
which is asymptotically stable and attracts every trajectory [32]. In addition, OSL maps are not
necessarily continuous as is shown in Sec. 2: easy examples of discontinuous OSL single-valued
functions in R1 with OSL constant µ = 0 are monotone decreasing functions.

In the case of OSL map F (even in the presence of discontinuities) a Filippov type approxi-
mation theorem is proved in [29] for inclusions with OSL and convex-valued right-hand sides with
outer perturbations and first order of approximation of the solutions with respect to these per-
turbation is established. This theorem is applied there to the Euler approximation of differential
inclusions and error estimates are derived implying convergence for right-hand sides which may
be not Lipschitz in the state variable (this is easy to see for autonomous inclusions). Effective
estimates for the Euler scheme providing convergence for OSL mappings being discontinuous in
the state variable follow from a Filippov-type theorem for OSL mappings with inner perturba-
tions [30], where order 1

2 of approximation with respect to the inner perturbations is obtained.
This leads to the order O(

√
h) of the Euler method for differential inclusions with (discontinuous)

OSL right-hand sides.
The Strengthened One-Sided Lipschitz (SOSL) condition we define next is intermediate be-

tween the Lipschitz and the OSL condition, i.e. weaker than the Lipschitz condition and stronger
than the OSL one.

Definition 1.3 ([54, p. 171]). The set-valued map F from a domain [t0, T ]×D in Rn+1 to Rn is
called Strengthened One-Sided Lipschitz (SOSL) in D with constant µ ∈ R if for a.e. t ∈ [t0, T ],
every x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ D and every v = (v1, . . . , vn) ∈ F (t, x) there is
w = (w1, . . . , wn) ∈ F (t, y) such that for all i ∈ {1, . . . , n} we have the implications

xi > yi ⇒ vi − wi ≤ µ|x− y|∞ (7)

and
xi < yi ⇒ wi − vi ≤ µ|x− y|∞ , (8)

where | · |∞ denotes the maximum norm in Rn.

The two cases in the definition above can be unified with the trivial case xi = yi as follows:
For a.e. t ∈ [t0, T ], every x, y ∈ D and every w ∈ F (t, y) there is v ∈ F (t, x) such that for all
i ∈ {1, . . . , n} the implications (7)–(8) hold, or equivalently

(xi − yi)(vi − wi) ≤ µ|xi − yi| · |x− y|∞ (i = 1, . . . , n) . (9)
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Note that also the SOSL constant µ may be negative and F is not necessarily a.e. single-valued.
For maps with values in R1, the SOSL condition is equivalent to the OSL one. Also, the set-valued
map F is SOSL iff coF (with convexified values) is SOSL.

A somewhat stronger (uniform) version of the SOSL condition appears earlier in [51, 52] (see
remarks, e.g., in [8, 9]). First order convergence of the Euler scheme is derived in [50] for 1d case
and in [51, 52] for higher dimensions for the unique solution of a differential inclusion satisfying
this condition. Later, first order of convergence of the solution set for the explicit/implicit Euler
method is derived in [54, 9] also for the wider class of SOSL maps as defined here.

The following hierarchy between the classes of OSL, SOSL and Lipschitz (in the Hausdorff
metric) mappings with compact values in Rn is not hard to verify (see e.g., Example 2.8 and [8,
Example 5.1]):

OSL ⊃ SOSL ⊃ Lip, (10)

and there is no equality between any two classes.
Although the SOSL condition is weaker than the Lipschitz continuity, it is strong enough to

provide approximation results for differential inclusions (see [54, 9]), better than for OSL maps
and often the same as for Lipschitz maps. This is exactly the case with the Filippov approximation
theorem (Theorem 1.1) proved here for SOSL maps in the right-hand side.

As a main result in this paper we prove a Filippov-type theorem for a SOSL right-hand side F
with inner and outer perturbations. The obtained estimate of the distance between the perturbed
and non-perturbed solutions is of first order, as in the classical Filippov theorem for the Lipschitz
case, and improves the corresponding approximation estimate for OSL right-hand side of [30],
removing the square root on the norm of the inner perturbation. Thus we prove the correctness
of the conjecture in [30, Remark 3.2] stating that, under a suitably defined SOSL condition, one
may obtain first order convergence with respect to the inner perturbation.

The paper is organized as follows: In the next section general definitions and known facts as
well as examples and properties of OSL and SOSL maps are presented. In Section 3 the main
theorem of the paper together with stability results for reachable sets are presented. In Section 4
an application of this theorem to approximations of dynamical systems with numerical experiments
are presented.

2 Preliminaries and examples

2.1 Notation

We denote vectors in Rn by x = (x1, x2, ..., xn) ∈ Rn. The (closed) Euclidean unit ball in Rn is
denoted by B1(0), the ball around the center x0 with radius r > 0 by Br(x0). The maximum
norm of the vector x ∈ Rn is denoted by |x|∞ = max1≤i≤n |xi|, its Euclidean norm is denoted
by |x|2 or simply as |x|. The norm of an L∞-function f : I → Rn for a bounded, nonempty
interval I = [t0, T ] ⊂ R is ‖f‖L∞ = ess supt∈I |f(t)|, for f being an L1-function we denote the
corresponding norm as ‖f‖L1 =

∫
I |f(t)| dt. For a real number µ we denote µ+ = max{0, µ},

µ− = min{0, µ}.
We denote by K(Rn) the set of compact, nonempty subsets of Rn and by C(Rn) the set of convex,

compact, nonempty subsets of Rn. To measure distances of bounded, nonempty sets A,B ⊂ Rn
we introduce the one-sided Hausdorff distance d(A,B) = supa∈A dist(a,B) and the (two-sided)
Hausdorff distance as dH(A,B) = max

{
d(A,B), d(B,A)

}
, where dist(z,B) = infb∈B |z − b|2

is the distance of a vector z ∈ Rn to the set B. The norm of a set is defined by ‖A‖2 =
dH(A, {0}) = sup{|a|2 : a ∈ A}. Recall that the Hausdorff distance in K(Rn) is also obtained via
dH(A,B) = min

{
ε > 0 |A ⊂ B + εB1(0), B ⊂ A + εB1(0)

}
. The interior, the boundary and the

closure of a set A ⊂ Rn are denoted by int(A), bd(A) and A, respectively.
We fix the time interval I = [t0, T ] and denote F : D ⇒ Rn for a set-valued map with domain

D ⊂ Rm (usually m ∈ {n, n + 1}) and which has subsets of Rn as images. The graph of the
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set-valued map F is defined as

GraphF = {(x, y) ∈ D × Rn : y ∈ F (x)} .

F is (Lebesgue) measurable if the pre-image F−1(U) = {t ∈ I : F (t) ∩ U 6= ∅} is a (Lebesgue)
measurable set for each open set U ⊂ Rn [3, Sec. 8.1]. For a single-valued map F (t) = {f(t)}
this corresponds to the usual criterion for (Lebesgue) measurable functions f : I → Rn that the
pre-image f−1(U) = {t ∈ I : f(t) ∈ U} of an open set U ⊂ Rn is (Lebesgue) measurable. F with
compact, nonempty images is upper-semicontinuous (usc) (in the ε-sense) [2, Sec. 1.1, Definition 5],
[3, Sec. 1.4, below Definition 1.4.1] if for all x ∈ D, ε > 0 there exists δ > 0 such that for all y ∈ Rn
with |y− x|2 < δ the inclusion F (y) ⊂ F (x) + εB1(0), i.e. d(F (y), F (x)) ≤ ε holds (in contrary to
set-valued continuity where d(F (x), F (y)) ≤ ε would also hold).

2.2 Inner and outer perturbations

We use the term “inner perturbation” for the state perturbation δ(·) in the inclusion (5) and “outer
perturbation” for the perturbation of the set of velocities ε(·) as it is done in the classial book of
Filippov [39, Chap. 2, § 7] and e.g., in [19, Definition 2], [44, Sec. 2], [21, Sec. A.4, (2)], [5, Sec. 5],
[12, (14)].

The lack of continuity of F (t, ·) is the main reason to consider separately perturbations of
the state variable (the inner perturbations) and perturbations of the set of velocities (the outer
perturbations) as in [39, Chap. 2, § 7]. Indeed, if F (t, ·) is Lipschitz continuous with constant L,
we have for small |δ(t)|2 the inclusion

F (t, x+ δ(t)) ⊆ F (t, x) + L|δ(t)|2B1(0) .

Then any solution y(·) of the perturbed inclusion (5) fulfills the inclusion

ẏ(t) ∈ F
(
t, y(t)

)
+ ξ(t) for a.e. t ∈ [t0, T ] and y(t0) = y0 ∈ Br(x0), (11)

where |ξ(t)|2 ≤ L|δ(t)|2 + |ε(t)|2. In the latter inclusion only a small outer perturbation is
present. In this case it is sufficient to consider only outer perturbations in the Filippov-type
theorems.

Yet, without continuity of F (t, ·), an element of the set F (t, x + δ(t)) may be far away from
the set F (t, x) for small |δ(t)|2 so that the approximation bound for the outer perturbation |ξ(t)|2
in (11) may be large, while the inner perturbations tend to zero.

The following simple example of Filippov illustrates this observation.
Let F : R ⇒ R be defined by

F (x) = −Sign(x) =


{1} if x < 0,
[−1, 1] if x = 0,
{−1} if x > 0.

(12)

The set-valued map in Fig. 1 (right plot) is the convex-valued usc “regularization” of − sign(x)
(see (15), left plot) and is discontinuous, only upper semicontinuous, at x = 0.

On the graph of F (x) = −Sign(x) we consider a sequence of points (xk, yk) = (δk,−1) and
(−xk,−yk) = (−δk, 1) with δk = 1

k for k ∈ N on its graph. In Fig. 1 (right plot) the red graph
and the blue points for k = 2 are shown.

Due to the upper semi-continuity of F for x = 0, i.e. for all ε > 0 there exists δ > 0 such that

F (z) ⊂ F (0) + εB1(0) for all z ∈ R with |z| ≤ δ,
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Figure 1: the function − sign(x) and its (unperturbed) set-valued variant −Sign(x)

the sequence ((xk, yk))k with yk ∈ F (xk) converges to (0,−1) ∈ F (0). Similarly, the sequence
((−xk,−yk))k converges to (0, 1) ∈ F (0). The missing lower semi-continuity of F at x = 0 implies
that the inclusion

F (0) ⊂ F (z) + εB1(0) for all z ∈ R with |z| ≤ δ,

holds only with ε ≥ 2 for any small δ > 0, and not for smaller ε > 0.
Thus, replacing an inner perturbation by an outer one may yield too coarse estimates in the

Filippov-type theorem. Considering inner perturbations separately from the outer ones refines
the estimates and allows to extend the approximation estimates to the case of set-valued maps F
which are discontinuous with respect to the state variable.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5 -Sgn(x)
-Sgn(x + 2)
-Sgn(x - 2)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
1.5

1.0

0.5

0.0

0.5

1.0

1.5 -Sgn(x)
-Sgn(x) + 2

-Sgn(x) - 2

Figure 2: inner (on the left) resp. outer (on the right) vector perturbations of −Sign(x)

In Fig. 2 the graphs of two inner vector perturbations F (x + δk) (in blue) and F (x − δk) (in
green) for δk = 1

k are shown for k = 2 in the left plot, while the right plot shows two outer vector
perturbations F (x) + εk (in blue) and F (x) − εk (in green) for εk = 1

k and k = 2. In both plots
the graph of the original mapping F (x) = −Sign(x) (dashed lines in red color in both plots) is
also present.
On Fig. 2 one checks visually that the Hausdorff distance between the graphs of F (·) and F (·+δk)
is bounded by δk. The same estimate for the graphs hold for the outer vector perturbation F (·)+εk .
Nevertheless, the Hausdorff distance between the values of F and the perturbed mapping F (·+δk)
at a given point x = 0 is equal to 2.

Let us sketch two more motivations for the systems (5) with vector and set-valued perturba-
tions, respectively. Theorem 1.1 requires Lipschitz continuity in the state variable with closed, not
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necessarily convex values and essentially that the approximate solution fulfills the inequality (2).
The latter together with ε0 = |y0 − x0|2 means that y(·) is a solution of the differential inclusion

ẏ(t) ∈ F (t, y(t)) + ε(t)B1(0) for a.e. t ∈ I and y(t0) ∈ x0 + ε0B1(0)

with set-valued outer perturbation ε(t)B1(0). In this case we can rewrite the inclusion in the
form (5) with δ(t) = 0 by [21, Proposition 3.5].

The second motivation we would like to sketch comes from set-valued discretization methods
for solving the differential inclusion (1) as the set-valued Euler method [35, 67, 17, 10]. A discrete
solution for the step size h = T−t0

N with a given N ∈ N taking values on the grid points tj = t0 +jh,
j = 0, . . . , N , has the form yj+1 = yj + hwj , wj ∈ F (yj), where we have assumed F to be
autonomous for simplicity. To prove the convergence for this set-valued method, one essential step
is to obtain the existence of a neighboring solution in continuous time. Consider the piecewise
linear interpolant

y(t) = yj + (t− tj)wj for t ∈ Ij (13)

on the subinterval Ij = [tj , tj+1], j = 0, . . . , N − 1. It is absolutely continuous with the derivative

ẏ(t) = wj ∈ F (yj) (14)

in the interior of Ij . The right-hand side in (14) can be seen as an inner vector perturbation of
the right-hand side F (y(t)) in (1), since

F (yj) = F (y(t) + δ(t)) with δ(t) =
{
yj − y(t) for t ∈ Ij \ {tj+1}, j = 0, . . . , N − 2 ,
yN−1 − y(t) for t ∈ IN−1, j = N − 1 .

Thus, y(·) is a solution of the perturbed differential inclusion (14) and the Filippov Theorem 3.7
guarantees the existence of a neighboring solution of (1) at a distance O(h) for SOSL right-hand
sides, if the inner perturbation δ(t) is O(h) in norm. If the original inclusion (1) has a unique
solution, this Filippov theorem already implies error estimates of order 1 for the set-valued Euler’s
or some Runge-Kutta methods (see [50, 45]).

2.3 Examples for SOSL/OSL set-valued maps

We list some classes of SOSL set-valued maps. An OSL (or SOSL) function in this subsection
means a single-valued function taking values in R or Rn. Since every single-valued map with the
values from an OSL function is an OSL set-valued map (see Remark 2.3), we start the discussion
with SOSL and OSL (single-valued) functions and the special case of linear functions.

Lemma 2.1. Let A ∈ Rn×n be a matrix and b(t) ∈ Rn for t ∈ I. Then the affine function
f(t, x) = Ax+ b(t) for x ∈ Rn, t ∈ I is

(i) OSL with constant µ = λmax, where λmax is the maximal eigenvalue of the symmetrized
matrix Asym = 1

2(A+A>),

(ii) SOSL with constant µ = max
i=1,...,n

(
max{0, aii}+

∑
j=1,...,n

j 6=i

|aij |
)

The SOSL constant can be estimated via max{0, max
i=1,...,n

aii}+ max
i=1,...,n

∑
j=1,...,n

j 6=i

|aij |.

Proof. (i) Let x, y ∈ Rn, t ∈ I and v = f(t, x) = Ax+ b(t), w = f(t, y) = Ay + b(t). Then,

〈x− y, v − w〉 = 〈x− y,A(x− y)〉 = 1
2〈x− y,A(x− y)〉+ 1

2〈A
>(x− y), x− y〉

= 〈x− y, 1
2(A+A>)(x− y)〉 = 〈x− y,Asym(x− y)〉 ≤ λmax|x− y|22
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is OSL with the claimed constant by the estimate with the Rayleight quotient.
(ii) Let i ∈ {1, . . . , n} and consider vi − wi. By v = Ax + b(t), w = Ay + b(t) we have

vi − wi = ai(x− y) with the i-th row vector a>i ∈ Rn. Hence,

(xi − yi)(vi − wi) = (xi − yi) · 〈a>i , x− y〉 = (xi − yi)
n∑
j=1

aij(xj − yj)

≤ aii(xi − yi)2 + |xi − yi|
∑

j=1,...,n
j 6=i

|aij | · |xj − yj |

≤
(

max{0, aii}+
∑

j=1,...,n
j 6=i

|aij |

︸ ︷︷ ︸
=:µi

)
|xi − yi| · |x− y|∞ .

Obviously,

µi ≤ max
k=1,...,n

µk = max
k=1,...,n

(
max{0, akk}+

∑
j=1,...,n

j 6=k

|akj |
)

≤ max{0, max
k=1,...,n

akk}+ max
k=1,...,n

∑
j=1,...,n

j 6=k

|akj | .

In the previous lemma we could have estimated the SOSL constant by the bigger row-sum norm
‖A‖∞ = max

i=1,...,n

∑
j=1,...,n

|aij |, but then the SOSL constant could no longer be zero, e.g., for diagonal

matrices with negative diagonal elements. Both constants can be non-positive as it is the case for

f(x) = Ax with the matrix A =
(
−2 −1
1 −1

)
with eigenvalues −2, −1 for the symmetrized matrix

Asym (the OSL constant is µ = −1) or for f(x) = Bx with the diagonal matrix B = diag({−2,−1})
and the SOSL constant µ = 0. It is easy to see with Lemma 2.1 that in the first case f(x) = Ax
is also SOSL but with positive constant µ = 1.

Remark 2.2. Each real-valued monotone decreasing function with domain in R is SOSL (hence
OSL) with constant µ = 0 and every dissipative function from Rn to Rn (see [20, Chap. 3, (1)])
is OSL with the same constant.

The negation of the sign function

f(x) = − sign(x) with sign(x) =


−1 if x < 0,

0 if x = 0,
1 if x > 0

(15)

for x ∈ R (see in Fig. 1, left picture) is discontinuous at x = 0 and SOSL with constant µ = 0.
The function g(x) = −x− sign(x) is OSL with constant −1 and SOSL with constant 0.

We now list some classes of set-valued SOSL and OSL and show connections to previously
defined notions in the literature.

Remark 2.3. Let F : Rn ⇒ Rn be a set-valued map. Each single-valued map with F (x) = {f(x)}
and an OSL/SOSL function f is an OSL/SOSL set-valued map.

Let F be dissipative (see [20, Chap. 3, (1)]), i.e. G = −F is monotone/accretive (see [21,
Sec. 4.3] so that for all x, y ∈ Rn and all v ∈ G(x), w ∈ G(y) the inequality 〈x − y, v − w〉 ≥ 0
holds. Then F is OSL with constant 0. An important example for dissipative set-valued maps is
F (x) = −∂g(x), the Moreau-Rockafellar subdifferential for a convex function g : Rn → R ∪ {∞},
see [21, Chap. 1, Sec. 4, Problems 12].
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We state some more examples of OSL and SOSL maps and refer to [29, 30] for similar example
classes and discussions on earlier OSL/SOSL concepts. The next result in (iv) generalizes [52,
Lemma 3.6] to SOSL maps.

Proposition 2.4. Let F : Rn ⇒ Rn be a set-valued map and let one of the following assumptions
hold:

(i) F is Lipschitz with constant L ≥ 0, i.e. dH(F (x), F (y)) ≤ L|x− y|2 , and set µF =
√
nL.

(ii) G : Rn ⇒ Rn is OSL/SOSL with constant µG ∈ R, U, V ⊂ Rn are nonempty and set
F (x) = G(x+ U) + V , µF = µG.

(iii) G : Rn ⇒ Rn is OSL/SOSL with constant µG ∈ R, λ ≥ 0 and set F = λG, µF = λµG.

(iv) G,H : Rn ⇒ Rn are OSL/SOSL maps with constants µG, µH ∈ R and set F = G + H,
µF = µG + µH .

(v) Fi : R ⇒ R are OSL maps with constants µi ∈ R, i = 1, . . . , n and set F (x) =
∑n
i=1 Fi(xi)ei

for x = (x1, . . . , xn) ∈ Rn with the standard unit vectors ei ∈ Rn, i = 1, . . . , n, the notation

Fi(xi)ei = {v ∈ Rn : vi ∈ Fi(xi) and vj = 0 for j ∈ {1, ..., n}, j 6= i} (16)

and µF = max{0,maxi=1,...,n µi}.

If G,H are SOSL in (ii)–(iv), then F is also SOSL in (i)–(v) with the stated constant µF .
If G,H are OSL in (ii)–(iv), then F is OSL in (i)–(v) with constant µF (with µF = L in (i)).

Proof. (i) is simple for the OSL or SOSL case and follows for x, y ∈ Rn, v ∈ F (x), i = 1, . . . , n
from

〈x− y, v − w〉 ≤ |x− y|2 · |v − w|2,
resp. (xi − yi)(vi − wi) ≤ |xi − yi| · |vi − wi| ≤ |xi − yi| · |v − w|2

≤ |xi − yi| · L|x− y|2 ≤ L
√
n · |xi − yi| · |x− y|∞

with w ∈ F (y) such that v ∈ w + L|x − y|2B1(0), see without proofs [30, Remark 2.1], [29,
Remark 2.2], [26, Remark 1].
For (ii) see [30, Lemma 3.1] for OSL maps, for SOSL maps let i = 1, . . . , n, x, y ∈ Rn, z ∈ F (x)
with z = w + v and w ∈ G(x + u), u ∈ U . Choose w̃ ∈ G(y + u) such that the SOSL condition
holds for G and set z̃ = w̃ + v ∈ G(y + U) + V . Then,

(xi − yi)(zi − z̃i) = (xi − yi) ·
(
(wi + vi)− (w̃i + vi)

)
≤ µG|xi − yi| · |x− y|∞ .

The proofs of (iii)-(iv) are standard and left to the reader.
(v) Let x, y ∈ Rn and v ∈ F (x) so that vi ∈ Fi(xi) for i = 1, . . . , n. By the OSL condition there
exists wi ∈ Fi(t, y) ⊂ R with (xi − yi)(vi − wi) ≤ µi|xi − yi|2 . We set w = (w1, . . . , wn) so that
w ∈ F (y) and

(xi − yi)(vi − wi) ≤ max{µi, 0}|xi − yi| · |x− y|∞

which proves the SOSL condition with constant µF .

It is remarkable that many well-known functions (or their negation) in machine learning,
electrical engineering, control theory or physics are SOSL (see e.g., [14, Sec. 2], [11, Sec. 2.4], [48,
58]), some functions are listed in the following example.

Example 2.5. All functions fi : R → R, i = 1, 2, below have the real numbers as domain and
range and belong to the class of SOSL functions.
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(i) The negation of the sigmoidal function

f1(x) = −σ(x, α) with σ(x, α) = 2
1 + exp(− x

α) − 1 (17)

for x ∈ R and some fixed α > 0 is SOSL with constant µ = 0, since f1(·) is monotone
decreasing, and is C∞(R), in particular is Lipschitz with constant L1 = 1

2α .

(ii) The negation of the saturation function

f2(x) = − sat(βx) with sat(x) =
{

sign(x) if |x| > 1,
x if |x| ≤ 1

(18)

for x ∈ R and some fixed β > 0 is Lipschitz with constant L2 = β. f2(·) is SOSL with
constant µ = 0, since f2(·) is also monotone decreasing.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1 - (x, 15 )

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1 - (x, 1
20 )

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1
- sat(x)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

1

0

1
- sat(4x)

Figure 3: sigmoidal (first row) and saturation function (second row) for α ∈ {1
5 ,

1
20}, β ∈ {1, 4}

The sigmoidal or the saturation function are used in practical realization (approximation) of the
discontinuous sign function from Remark 2.2 (see e.g., [48, Sec. 3.1]), or in the theoretical analysis
of discontinuous differential equations. This approximation is usually performed by the choice of
small values α > 0 for the sigmoidal function f1(x) in (17) or for the saturation function f2(x)
by large values for β > 0 in (18).

In (i) L1 = maxx∈R |ḟ1(x)| = |ḟ1(0)| = 1
2α tends to ∞ for α → 0 + 0 and in (ii) the Lipschitz

constant L2 = β explodes if the non-saturation zone [− 1
β ,

1
β ] is narrowed for β →∞. This behavior

can be observed in Fig. 3.

Further examples of SOSL (monotone decreasing) functions used in machine learning are the
negation of the Heaviside and the ReLU/ramp function (see e.g., [14, Chap. 2]).

Next we present examples of OSL and SOSL set-valued maps which are not single-valued.

Example 2.6. We study examples of SOSL set-valued maps Fi : R ⇒ R, i = 1, 2, with convex,
compact, nonempty images which are set perturbations of the OSL map G(x) = −Sign(x) in
the sense of Proposition 2.4(ii). Compare both perturbations with the original set-valued map G
in Fig. 1 (right plot).

(i) F1(x) = −Sign(x) + 1
4 [−1, 1] (outer perturbation of OSL set-valued map G)

in Fig. 4 (left) is OSL (and SOSL) with constant µ = 0 due to Proposition 2.4(ii) (apply
with U = {0} and V = 1

4 [−1, 1]). F1 is discontinuous (only usc) and not dissipative.

(ii) F2(x) = −Sign(x+ 1
4 [−1, 1]) (inner perturbation of OSL set-valued map G)

in Fig. 4 (right) is OSL (and SOSL) with constant µ = 0 due to Proposition 2.4(ii) (apply
with U = 1

4 [−1, 1] and V = {0}). F2 has the same properties as F1 in (i).
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 - Sgn(x) + 14 [-1,1]
- Sgn(x)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0 Sgn(x + 1
4 [ 1, 1])

- Sgn(x)

Figure 4: the two SOSL maps F1 and F2 (outer and inner set perturbation of G on the left/right)

Example 2.7. An example of a discontinuous SOSL set-valued map defined in R with non-
degenerate intervals as values, a negative SOSL constant µ = 0 and which cannot be repre-
sented as the sum of a Lipschitz multifunction and a dissipative (SOSL) single-valued function
is F (x) = co{− sign(x),−(sign(x) + x1/3)}.

We end this section by one example which is OSL but not SOSL.

Example 2.8 ([8, Example 5.6]). Consider the set-valued map F (x) = −∂g(x) for x ∈ Rn which
is the convex subdifferential of Rockafellar/Moreau of the real-valued function g(x) = |x|2. Then
F is OSL and dissipative by Remark 2.3 (i.e. −F is monotone) but not SOSL for n ≥ 2.

Another example would be the Hölder continuous function of degree 1
3 from [30, Example 5.4]

which is OSL with constant µ = 1
2 but not SOSL. More variants of Lipschitz-type or OSL-type

set-valued maps and corresponding examples can be found in [9] and [7, 8].

3 Filippov-type theorems for SOSL maps

3.1 Existence and boundednes of solutions

For the proof of Filippov theorems under weaker conditions than Lipschitz continuity we need an
existence result for differential inclusions under weak assumptions.

Theorem 3.1 ([55, Corollary 6 of Theorem 1]). Consider F : I × Rn ⇒ Rn, x0 ∈ Rn such that

(i) F (t, x) is an orientor field, i.e. F (t, x) is closed and nonempty,

(ii) F (·, x) is measurable in t ∈ I for all x ∈ Rn,

(iii) for almost all t ∈ I
– either F (t, ·) is upper semi-continuous (= usc) at x ∈ Rn and F (t, x) is convex
– or F (t, ·) is lower-semicontinuous (= lsc) at some neighborhood of x ∈ Rn

(iv) F (·, ·) is (weakly) locally integrably bounded, i.e. for every bounded set S̃ ⊂ I × Rn the
distance function dist(0, F (t, x)) is bounded by an integrable function k : I → R for all
(t, x) ∈ S̃.

Then, there exists a solution of the differential inclusion (1).

Remark 3.2. The assumptions of the theorem provide two options to guarantee the existence:
convex images with upper semi-continuity only or lower semi-continuity with nonconvex closed
images (similar to the discussion in [2, Sec. 2.1, p. 94]). From now on we mainly follow the first
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option for the rest of the paper, since the set-valued map −Sign(x) which appears in most of our
applications is only usc.

A similar local existence result can be found in [64] in Theorem 8.13, where (ii) is replaced
by the weaker existence of a (strongly) measurable selector of F (·, x). The global existence follows
from Theorem 8.15 together with Example 8.17.

We now summarize our basic assumptions on the right-hand side F : I × Rn ⇒ Rn of the
differential inclusion. Here, the boundedness condition in (A1) is slightly stronger than (iv) in
the previous existing result (that guarantees the boundedness of at least one solution), since we
consider a sub-inclusion of F (t, x) and also need the boundedness of all solutions.

(A1) F (t, x) ⊂ Rn is compact and nonempty and is integrably bounded on bounded sets, i.e. for
every constant C and for every compact S ⊂ Rn with ||S||2 ≤ C there is an L1-function
KF (·;C) such that

||F (t, S)||2 ≤ KF (t;C). (19)

(A2) F (·, x) is Lebesgue measurable in t ∈ I for all x ∈ Rn.

(A3) F (t, ·) is upper semi-continuous at x ∈ Rn for almost all t ∈ I.

(A4) F (t, x) is convex.

(A5) F is SOSL with a constant µ ∈ R.

In the case that (A2)–(A3) hold, F is called upper Carathéodory in [1, Sec. 4].

We first state a version of Gronwall’s lemma in differential form which does not require the
usual non-negativity of functions defining the right-hand side (20) of the inequality. It is inspired
by the proofs of [66, Lemma 2.4.4] and [21, Sec. 8.5].

Lemma 3.3. Let I = [t0, T ], k(·) and p(·) are in L1(I), ψ : I → R absolutely continuous and

ψ̇(t) ≤ k(t)ψ(t) + p(t) for a.e. t ∈ I. (20)

Then,

ψ(t) ≤ ϕ(t) = eK(t)
(
ϕ(t0) +

∫ t

t0
e−K(s)p(s) ds

)
, (21)

where K(t) =
∫ t
t0
k(s) ds and ϕ(·) solves the initial value problem

ϕ̇(t) = k(t)ϕ(t) + p(t) for a.e. t ∈ I, ϕ(t0) = ψ(t0)

Proof. Define the AC function η(t) = e−K(t)ψ(t) for t ∈ I. Then, via (20)

η̇(t) = e−K(t)(−k(t)ψ(t) + ψ̇(t)) ≤ e−K(t)p(t) . (22)

η(t) = η(t0) +
∫ t
t0
η̇(s) ds by absolute continuity together with (22) and ψ(t) = eK(t)η(t) yields

ψ(t) ≤ eK(t)
(
ϕ(t0) +

∫ t

t0
e−K(s)p(s) ds

)
= ϕ(t) .
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We prove a technical lemma for the boundedness of solutions with inner vector and outer set-
valued perturbations similar to [29, Lemma 3.1] and [30, Lemma 3.2]. Note that the integrable
boundedness condition in (A1) (see e.g., [31]), is weaker than simply boundedness on bounded
sets [30] and the linear growth condition, ||F (t, x)||2 ≤ c(t)(1+ |x|2) with c(·) ∈ L1(I) [21, Chap. 2,
§ 6], but stronger than the condition (iv) in Theorem 3.1. The assumption (A1) allows the estimates
for all perturbed solutions in the next lemma below.

Lemma 3.4. Let F : I × Rn ⇒ Rn fulfill assumptions (A1) and be OSL with constant µ ∈ R.
Then for all Kδ,Kε,K0 ≥ 0 there exist constants CB, CF ≥ 0 such that for all measurable

vector perturbations δ(·) ∈ L∞(I), ε(·) ∈ L1(I) and all initial values y0 ∈ Rn with

‖δ(·)‖L∞ ≤ Kδ , ‖ε(·)‖L1 ≤ Kε , |y0 − x0|2 ≤ K0 , (23)

the solutions y(·) of the perturbed inclusion (5) satisfy

‖y(·)‖L∞ ≤ CB , ‖ẏ(·)‖L1 ≤ CF , (24)

where

CB = eµ+(T−t0)(|x0|2 +K0
)

+ eµ+(T−t0)(‖KF (·;Kδ)‖L1 +Kε
)
, (25)

CF = ‖KF (·;CB +Kδ)‖L1 +Kε . (26)

Proof. F is OSL so that for all x, x̃ ∈ Rn and for a.e. t ∈ I (see (6) and [29])

δ∗(x− x̃, F (t, x)) = max
v∈F (t,x)

〈x− x̃, v〉 ≤ max
ṽ∈F (t,x̃)

(
〈x− x̃, ṽ〉+ µ|x− x̃|22

)
= δ∗(x− x̃, F (t, x̃)) + µ|x− x̃|22

For a.e. t ∈ I, ẏ(t) ∈ F (t, y(t)+δ(t))+ε(t). Then using the above inequality for support functions,

〈y(t), ẏ(t)− ε(t)〉 ≤ δ∗(y(t), F (t, y(t) + δ(t))) ≤ δ∗(y(t), F (t, δ(t))) + µ|y(t)|22
≤ δ∗(y(t), F (t, ‖δ(·)‖L∞B1(0)) + µ · |y(t)|22
≤ |y(t)|2 · ‖F (t,KδB1(0))‖2 + µ · |y(t)|22 ≤ µ · |y(t)|22 +KF (t;Kδ) · |y(t)|2

holds for a.e. t ∈ I by a suitable L1-function KF (·;Kδ), since the set KδB1(0) is bounded. Hence,

〈y(t), ẏ(t)〉 = 〈y(t), ẏ(t)− ε(t)〉+ 〈y(t), ε(t)〉
≤ µ · |y(t)|22 +KF (t;Kδ) · |y(t)|2 + |ε(t)|2 · |y(t)|2 .

Introducing the function p(t) = |y(t)|2, it is trivial to show by definition that p(·) is AC and that
p2(·) is differentiable at each point of differentiability of y(·), i.e. almost everywhere in I. Since
p(t)2 is a composition of an (outer) locally Lipschitz function g(s) = s2 and an AC function p(t),
the (extended) chain rule holds for a.e. t ∈ I by [60, Theorem 2] yielding

p(t)ṗ(t) = 1
2
d

dt
p(t)2 = 1

2
d

dt
〈y(t), y(t)〉 = 〈y(t), ẏ(t)〉 ≤ µ · p(t)2 + (KF (t;Kδ) + |ε(t)|2) · p(t) (27)

Next we want to prove (28) for almost every t ∈ I.

ṗ(t) ≤ µ · p(t) +KF (t;Kδ) + |ε(t)|2 (28)

Case 1: Consider the points t where p(t) 6= 0 and ṗ(t) exists.
In the (measurable) set of points t ∈ I where p(t) 6= 0 we can cancel p(t) on both sides of the
estimate (27) and get (28).
Case 2: If t lies in the (measurable) set N = {τ ∈ I : p(τ) = 0}, we can consider only its subset of
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the points of density (which is of full measure by the Lebesgue density theorem, see [13, Chap. II,
Theorem 5.1]), at which also the derivative ṗ(t) exists, since p(·) is absolutely continuous. Consider
an arbitrary sequence {tk}k in N converging to such a density point t and calculate

ṗ(t) = lim
k→∞

p(t)− p(tk)
t− tk

= 0

since p(t) = 0. Then (28) is trivially fulfilled.
In both cases (28) holds for a.e. t ∈ I and it follows from the Gronwall inequality (Lemma 3.3)
that

|y(t)|2 = p(t) ≤ eµ(t−t0)|y0|2 +
∫ t

t0
eµ(t−s)(KF (s;Kδ) + |ε(s)|2

)
ds

≤ eµ(T−t0)(|x0|2 +K0
)

+ eµ(T−t0)
(
‖KF (·;Kδ)‖L1 +

∫ T

t0
|ε(s)|2 ds︸ ︷︷ ︸
≤Kε

)
= CB (29)

which proves the first inequality in (24). Furthermore, we have for a.e. t ∈ I:

|ẏ(t)|2 ≤ ‖F (t, y(t) + δ(t)) + ε(t)‖2 ≤ ‖F (t, y(t) + δ(t))‖2 + |ε(t)|2
≤ ‖F (t, (CB +Kδ)B1(0)))‖2 + |ε(t)|2 ≤ KF (t;CB +Kδ) + |ε(t)|2 ,

‖ẏ(·)‖L1 =
∫ T

t0
|ẏ(t)|2 dt ≤ ‖KF (·;CB +Kδ)‖L1 +

∫ T

t0
|ε(t)|2 dt ≤ ‖KF (·;CB +Kδ)‖L1 +Kε = CF

which proves the second inequality in (24).

To prove a Filippov-type theorem for the SOSL case, we state an equivalent condition to the
SOSL property which refines the working condition in [54, Sec. 2, (31)] and is applied in the proofs
in this section.

Lemma 3.5. Let F : I × Rn ⇒ Rn have nonempty images. The following condition is equivalent
to the SOSL condition for F :
For a.e. t ∈ I and every x, y, ỹ ∈ Rn, w ∈ F (t, y) there is v ∈ F (t, x) such that

(xi − ỹi)(vi − wi) ≤ µ|xi − ỹi| · |x− ỹ|∞ + |µ| · |xi − ỹi| · |y − ỹ|∞ (30)

for every index i ∈ {1, . . . , n} satisfying

|xi − yi| > |y − ỹ|∞ . (31)

Proof. For given t, x, y, ỹ we denote by J the set of indices satisfying (31).
First, we assume that (30) holds for any given t, x, y, ỹ and indices i ∈ J . Choosing ỹ = y, we

get from (30) the SOSL condition in the form (9) for a.e. t ∈ I.
Conversely, let F be SOSL. Then there exists a subset Ĩ ⊂ I of full measure such that the

inequalities in Definition 1.3 hold for given x, y, ỹ ∈ Rn. Let t ∈ Ĩ and i ∈ J . Without loss of
generality suppose xi > yi. Then it follows from (31) that xi > ỹi. We obtain from the SOSL
condition that for the given x, y ∈ Rn, w ∈ F (t, y) there is v ∈ F (t, x) such that for i ∈ J

vi − wi ≤ µ|x− y|∞ .

We multiply this inequality by the positive number xi − ỹi = |xi − ỹi| and obtain

(xi − ỹi)(vi − wi) ≤ µ|xi − ỹi| · |x− y|∞ . (32)

Then, for µ ≥ 0 we apply the triangle inequality |x− y|∞ ≤ |x− ỹ|∞ + |y − ỹ|∞ and get

(xi − ỹi)(vi − wi) ≤ µ|xi − ỹi| · |x− ỹ|∞ + µ|xi − ỹi| · |y − ỹ|∞
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which obviously implies the claim for t ∈ Ĩ.
In the case µ < 0 we use the inverse inequality |x−y|∞ ≥ |x− ỹ|∞−|y− ỹ|∞ and get from (32)

(xi − ỹi)(vi − wi) ≤ µ|xi − ỹi| · |x− ỹ|∞ − µ|xi − ỹi| · |y − ỹ|∞

which also implies (30).

Remark 3.6. The working condition for SOSL maps in Lemma 3.5 plays a key role in the defini-
tion of an auxiliary differential sub-inclusion in the proof of the Filippov theorem for SOSL maps.
The corresponding one for OSL maps

〈x− ỹ, v − w〉 ≤ µ|x− y|22 + |y − ỹ|2 · |v − w|2

which is equivalent to the OSL condition is used in [30] for the same purpose in the proof of the
Filippov theorem in the OSL case.

We recall the working condition for SOSL maps in [54, Sec. 2, (31)]: For (a.e.) t ∈ I and all
x, y, ỹ ∈ Rn, v ∈ F (t, x) there is w ∈ F (t, y) such that

(xi − ỹi)(vi − wi) ≤ µ|x− ỹ|2∞ + µ · |x− ỹ|∞ · |y − ỹ|∞ (33)

for indices i ∈ {1, . . . , n} satisfying

|xi − yi| > κ|y − ỹ|∞ . (34)

Both working conditions (30)–(31) and (33)–(34) are equivalent to the SOSL condition for µ ≥ 0,
κ = 1, but only (30)–(31) is equivalent to the SOSL property if µ < 0.

3.2 Filippov approximation theorem for the SOSL case

We now state the main result of this paper, the Filippov theorem for inclusions with SOSL right-
hand sides.

Theorem 3.7 (Filippov-type theorem for the SOSL case with inner perturbations). Let F :
I × Rn ⇒ Rn satisfy (A1)–(A5), consider the inner vector perturbation δ(·) ∈ L∞(I) and let ỹ(·)
be a solution of the inclusion

˙̃y(t) ∈ F (t, ỹ(t) + δ(t)) for a.e. t ∈ I and ỹ(t0) = y0 . (35)

Then there exists a solution x(·) of the inclusion (1) such that for all t ∈ [t0, T ]

|ỹ(t)− x(t)|∞ ≤ max
{
eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) · ‖δ(·)‖L∞

}
+ |µ| ·

∫ t

t0
eµ(t−s)|δ(s)|2 ds . (36)

Proof. The proof is done in several steps. Denote by Ω the measurable set of points t in I in
which all ỹi(·), i = 1, . . . , n, are differentiable in t as well as (9), (30)–(31), (35) and the upper-
semicontinuity of F (t, ·) hold. Since ỹ(t) is absolutely continuous, Ω has full measure in I.

Step 1: definition of an auxiliary differential inclusion involving the criterion of Lemma 3.5
For the given functions ỹ(·), δ(·) we set y(t) = ỹ(t) + δ(t) and for any x ∈ Rn, t ∈ I = [t0, T ] we
denote by J(t, x) the set of indices i ∈ {1, 2, ..., n} satisfying the condition

|xi − yi(t)| > ‖δ(·)‖L∞ . (37)

Clearly, for the given t, x, y(t), ỹ(t), we have J(t, x) ⊂ J , where J is the set of indices for which (31)
holds (see the proof of Lemma 3.5). For (t, x) ∈ Ω× Rn let us introduce the set-valued mapping

G(t, x) =
{
v ∈ F (t, x) | ∀i ∈ J(t, x) : (xi − ỹi(t))(vi − ˙̃yi(t))

≤ µ|xi − ỹi(t)| · |x− ỹ(t)|∞ + |µ| · |xi − ỹi(t)| · |δ(t)|∞
}
. (38)

15



Note that G(t, x) is well-defined by (38) for all x ∈ Rn and t ∈ Ω. For t ∈ I \Ω, x ∈ Rn we define
G(t, x) = F (t, x) and consider the auxiliary differential inclusion

ẋ(t) ∈ G(t, x(t)) for a.e. t ∈ I and x(t0) = x0 . (39)

Step 2: verification of the conditions in Theorem 3.1 ensuring the existence of a solution of (39).
(i), (iii) The values of G(t, x) are convex, compact, nonempty.
For t ∈ I \ Ω, x ∈ Rn, all three conditions in (i) hold by the assumptions on F , since G(t, x) =
F (t, x).
For t ∈ Ω, the above mentioned inclusion J(t, x) ⊂ J and Lemma 3.5 imply that G(t, x) 6= ∅ for
all x ∈ Rn, since ˙̃y(t) ∈ F (t, ỹ(t) + δ(t)) = F (t, y(t)) for t ∈ Ω. The convexity and closedness
follow directly from (38). For the upper semi-continuity we now rewrite the definition of G(t, x)
for t ∈ I, x ∈ Rn. We introduce for i ∈ {1, . . . , n}

• the set-valued map Hi : Rn ⇒ I

Hi(x) = {t ∈ I : ξi(t, x) > ‖δ(·)‖L∞} with ξi(t, x) = |yi(t)− xi|

collects the times t for which (37) holds,

• the set-valued maps D̃i, Di, D : I × Rn ⇒ Rn, the functions ηi, βi : I × Rn → R and

ηi(t, x) = ỹi(t)− xi,

βi(t, x) =


(ỹi(t)− xi) ˙̃yi(t)− µ|xi − ỹi(t)| · |x− ỹ(t)|∞ − |µ| · |xi − ỹi(t)| · |δ(t)|∞

for t ∈ Ω, x ∈ Rn,
−|ỹi(t)− xi| ·KF (t, |x|2) for t ∈ I \ Ω, x ∈ Rn,

(40)

D̃i(t, x) = {v ∈ Rn : ηi(t, x)vi ≥ βi(t, x)} ∩ F (t, x) . (41)

Note that for t ∈ I \Ω the inequality in (41) is trivially satisfied for every v ∈ F (t, x) by (19).

Di(t, x) = χHi(x)(t)D̃i(t, x) + (1− χHi(x)(t))F (t, x) , (42)

G(t, x) =
n⋂
i=1

Di(t, x). (43)

It is easy to verify by (43) that G has closed values, since the values of F and Di are closed for
t ∈ I, x ∈ Rn.
(ii) G(·, x) is measurable for any x ∈ Rn
Let us first mention that all functions ηi(t, x)vi and βi(t, x) for a fixed x ∈ Rn are Carathéodory in
(t, v) ∈ I × Rn, i.e. measurable in t for fixed v and continuous with respect to v for fixed t. For a
fixed x ∈ Rn the set Hi(x) is measurable as the pre-image of the open interval U = (‖δ(·)‖L∞ ,∞)
for the measurable function ϕ(·) = |yi(·) − xi|. For fixed (t, x) ∈ Ω × Rn the first operand in
the intersection of set-valued map D̃i(t, x) is measurable in t respectively by [16, Théorème 3.5].
The measurability of D̃i(·, x) follows from the intersection with the measurable set-valued map
F (·, x), the one of Di(·, x) follows from (42), since Hi(x) is a measurable set and therefore, the
characteristic function χHi(x)(·) is measurable in t by [18, Example 2.1.2] as well as the product
χHi(x)(·)D̃i(·, x) by [16, Corollaire 1]. As a finite intersection in (43) the measurability of G(·, x)
is granted on I by [3, Theorem 8.2.4].
(iii) G(t, ·) is usc for t ∈ Ω
For this we show that for a fixed t ∈ Ω the graph of Di(t, ·) is closed for every i = 1, ..., n.
For sequences with limk→∞ x

k = x∗ and limk→∞ v
k = v∗ with vk ∈ Di(t, xk) we show that

v∗ ∈ Di(t, x∗).
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case a: t ∈ Hi(x∗)
The continuity of ξ(t, ·) yields that t ∈ Hi(xk) and vk ∈ D̃i(t, xk) from (42) for large k.
The left- and right-hand sides ηi(t, x)vi and βi(t, x) in the inequality (41) are continuous in (x, v),
so that the convergence of both sequences {xk}k, {vk}k yield the inequality (41) in the first set
of the intersection also for (x∗, v∗). Since the graph of F (t, ·) is closed, v∗ ∈ D̃i(t, x∗) is valid and
v∗ ∈ Di(t, x∗) from t ∈ Hi(x∗).

case b: t /∈ Hi(x∗)
By definition in (42) Di(t, x∗) = F (t, x∗) and v∗ ∈ Di(t, x∗) holds trivially.
Therefore in all cases the graphs of Di(t, ·) and G(t, ·) are closed and G(t, ·) is usc due to [2,
Sec. 1.1, Theorem 1] (see also [3, Propositions 1.4.8–1.4.9]), since F (t, x) is compact and F (t, ·) is
usc in x.
(iv) G is locally integrably bounded as a subset of F , which is integrably bounded on bounded
sets by (A1).
Hence, we have checked all assumptions of the Existence Theorem 3.1.

Step 3: solution of the auxiliary differential inclusion
By Theorem 3.1, there exists a solution x(t) of the auxiliary inclusion (39). We set z(t) = x(t)−ỹ(t)
for the next two steps. Clearly, z(·) is AC and we can assume without loss of generality (possibly
after removing a set of measure zero from Ω) that x(·) and z(·) are differentiable for t ∈ Ω.
In the next steps we prove the estimate (36).

Step 4: local SOSL estimate for zi(·) on open subsets of Ω
For i = 1, . . . , n we define the sets

θi =
{
t ∈ I : |yi(t)− xi(t)| > ‖δ(·)‖L∞

}
,

T imax =
{
t ∈ I : |zi(t)| = |z(t)|∞} ,

Θi = int θi ∩ intT imax .

By the continuity of z(·) and the measurability of yi(·)− xi(·), θi and T imax are measurable sets so
that Θi is measurable and open. Define the open set Θ =

⋃n
i=1 Θi. Then

I \Θ =
n⋂
i=1

(
I \ (int(θi) ∩ int(T imax))

)
=

n⋂
i=1

(
(I \ int(θi) ∪ (I \ int(T imax)

)
(44)

is a closed set. Then clearly I = Θ ∪ int(I \ Θ) ∪ bd(I \ Θ). It is well-known that every open
set V ⊂ R is a countable union of disjoint open intervals (see e.g., [61, Theorem 1.3] or [41,
Proposition 0.21]). Every such disjoint open interval is the maximal interval (with respect to set
inclusion) containing a given point of V . We will call these disjoint open intervals (maximal)
components of V .

Step 4a: We now show that for any i ∈ {1, . . . , n} and any (maximal) component of Θi ,
∆ = (t′, t′′) and every t ∈ ∆ = [t′, t′′] the following estimate holds:

|z(t)|∞ ≤ eµ(t−t′)|z(t′)|∞ + |µ| ·
∫ t

t′
eµ(t−s)|δ(s)|2 ds (45)

Note that if (45) holds on the open interval ∆, then it is also true on its closure by the continuity
of z(·) and of the function in the right-hand side of (45). For (45) we show the following estimate
for a.e. t ∈ Θi:

d

dt
|zi(t)| ≤ µ|z(t)|∞ + |µ| · |δ(t)|2 (46)
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We use the definition of G(t, x) (see (38)) for t ∈ Θi ∩Ω, since ẋ(t) ∈ F (t, x(t)) and (31) holds for
t ∈ ∆ ⊂ Θi Hence, for t ∈ Θi ∩ Ω

zi(t)żi(t) = (xi(t)− ỹi(t))(ẋi(t)− ˙̃yi(t))
≤µ|xi(t)− ỹi(t)| · |x(t)− ỹ(t)|∞ + |µ| · |xi(t)− ỹi(t)| · |y(t)− ỹ(t)|∞
=µ|zi(t)| · |z(t)|∞ + |µ| · |zi(t)| · |δ(t)|2 , (47)

since y(t) = ỹ(t) + δ(t).
For the absolutely continuous function p(τ) = |zi(τ)| and τ ∈ I we can argue as in the proof of
Lemma 3.4 to get that p(·)2 and zi(·)2 are differentiable at the points where |zi(·)| is differentiable
that is w.l.o.g. in Ω (eventually removing a set of zero measure from Ω). Furthermore, the (ex-
tended) chain rule holds for p(τ)2 = zi(τ)2 and a.e. τ ∈ I (w.l.o.g. we may assume that τ ∈ Ω)
yielding together with (47)

p(τ)ṗ(τ) = 1
2
d

dτ
p(τ)2 = 1

2
d

dτ
zi(τ)2 = zi(τ)żi(τ)

≤ µp(τ) · |z(τ)|∞ + |µ| · p(τ) · |δ(τ)|2 for τ ∈ Ω. (48)

We can repeat the arguments of cases 1 and 2 in the proof of Lemma 3.4 to show that (46) holds
for t ∈ Θi ∩ Ω. We can apply the Gronwall inequality (Lemma 3.3) together with p(t) = |zi(t)| =
|z(t)|∞ for t ∈ ∆ ⊂ Θi ⊂ T imax and it follows from (46) that (45) holds.

Step 4b: We show that the inequality (45) proved in step 4a for a (maximal) component of
Θi also holds for t ∈ ∆ = [t′, t′′] for any (maximal, possibly larger) component ∆ = (t′, t′′) of
Θ =

⋃n
i=1 Θi.

Indeed, take an arbitary (maximal) component ∆i = (t′i, t′′i ) of Θi. If it does not intersect any
(maximal) component ∆j = (t′j , t′′j ) of Θj for j 6= i, then ∆i is also a (maximal) component of Θ
and we can apply the result of step 4a.

If ∆i ∩ ∆j 6= ∅ for some j 6= i, we now show that (45) holds in the closure of the interval
∆i ∪∆j = (t′, t′′).
There are two possibilities:
a) the inclusions ∆i ⊂ ∆j or ∆j ⊂ ∆i hold
In this case we simply apply step 4a on the larger interval.
b) ∆i and ∆j overlap partially, i.e. either t′j ≤ t′i < t′′j ≤ t′′i or t′i ≤ t′j < t′′i ≤ t′′j
Assume for instance the first sub-case (the second one is similar to prove). Writing (45) for the
interval [t′j , t′i], we get

|z(t′i)|∞ ≤ e
µ(t′i−t

′
j)|z(t′j)|∞ + |µ|

∫ t′i

t′j

eµ(t′i−s)|δ(s)|2 ds . (49)

Let t ∈ [t′j , t′′i ]. If t ∈ [t′j , t′′j ], then (45) holds by Claim 1 for this interval. In the other case
t ∈ [t′i, t′′i ]. Then we apply (45) in (t′i, t′′i ), and for |z(t′i)|∞ we use (49) and get

|z(t)|∞ ≤ eµ(t−t′i)|z(t′i)|∞ + |µ|
∫ t

t′i

eµ(t−s)|δ(s)|2 ds

≤ eµ(t−t′i)
(
eµ(t′i−t

′
j)|z(t′j)|∞ + |µ|

∫ t′i

t′j

eµ(t′i−s)|δ(s)|2 ds
)

+ |µ|
∫ t

t′i

eµ(t−s)|δ(s)|2 ds

= eµ(t−t′j)|z(t′j)|∞ + |µ|
∫ t′i

t′j

eµ(t−s)|δ(s)|2 ds+ |µ|
∫ t

t′i

eµ(t−s)|δ(s)|2 ds ,

where we have used (49) in the second estimate. The estimate above implies that (45) holds in
the closure of the union (t′, t′′) of any two intersecting (maximal) components ∆i,∆j of Θi and
Θj , respectively.
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Since every (maximal) component of Θ is a union of countably many intersecting components
of Θi, i = 1, . . . , n, using the above argument and induction, we obtain that (45) holds in the
closure of any (maximal) component of Θ.

In the next step we derive an error estimate in I \Θ representing an error reset in the estimate,
since errors at previous times are not accumulated in this case.

Step 4c (SOSL error reset): We now prove that for all t ∈ int(I) \Θ we have

|z(t)|∞ ≤ 2‖δ(·)‖L∞ . (50)

Fix t ∈ int(I) \ Θ, and define Jmax(t) = {i ∈ {1, . . . , n} : |zi(t)| = |z(t)|∞} as set of “maximal”
indices. Obviously, Jmax(t) 6= ∅ and t ∈ T imax for all i ∈ Jmax(t). Consider the possible cases:

1) there exists i0 ∈ Jmax(t) with t ∈ int(T i0max)
Since t ∈ int(I)\Θ, it follows from a similar representation as in (44) that t ∈ int(I)\int(Θi0).
Hence, there are two sub-cases:
α) t ∈ int(I) \Θi0 , i.e. t /∈ int(Θi0) and t /∈ bd(Θi0)
Then t /∈ Θi0 and

|xi0(t)− yi0(t)| ≤ ‖δ(·)‖L∞ , |zi0(t)| = |z(t)|∞ ,

thus by the triangle inequality and t ∈ T i0max

|zi0(t)| − |δi0(t)| ≤ |zi0(t)− δi0(t)| = |xi0(t)−
(
ỹi0(t) + δi0(t)

)
|

= |xi0(t)− yi0(t)| ≤ ‖δ(·)‖L∞

so that |z(t)|∞ = |zi0(t)| ≤ ‖δ(·)‖L∞ + |δi0(t)| ≤ ‖δ(·)‖L∞ + |δ(t)|2 ≤ 2‖δ(·)‖L∞ .

β) t ∈ bd(Θi0)
Since t ∈ bd(Θi0)\bd(I), there exists a sequence {τk}k ⊂ (int(I)\Θi0)∩int(T i0max) converging
to t. Hence, by the definition of Θi0 and T i0max ,

|xi0(τk)− yi0(τk)| ≤ ‖δ(·)‖L∞ , |zi0(τk)| = |z(τk)|∞

for k ∈ N. Thus, by the triangle inequality and τk ∈ T i0max

|zi0(τk)| − |δi0(τk)| ≤ |zi0(τk)− δi0(τk)| = |xi0(τk)−
(
ỹi0(τk) + δi0(τk)

)
|

= |xi0(τk)− yi0(τk)| ≤ ‖δ(·)‖L∞ ,

so that |z(τk)|∞ = |zi0(τk)| ≤ ‖δ(·)‖L∞ + |δi0(τk)| ≤ ‖δ(·)‖L∞ + |δ(τk)|2 ≤ 2‖δ(·)‖L∞ .

The continuity of z(·) yields |z(t)|∞ ≤ 2‖δ(·)‖L∞ and also (50).

2) for all i ∈ Jmax(t), t /∈ int(T imax)
Then, since t ∈

⋂
i∈Jmax(t) T

i
max, it follows that there exists i0 ∈ Jmax(t) with t ∈ bd(T i0max).

T imax is closed by the continuity of zi(·), z(·) so that int(I) \ T imax is open and bd(T imax) =
bd(int(I) \ T imax) is contained in a union of countable many points which has measure 0.
Thus we obtain (50) for a.e. t ∈ int(I) \ Θ. By the continuity of |z(·)|∞ we get that (50)
holds for every t ∈ int(I) \Θ.

Step 4d: t ∈ bd(I) = {t0, T}
If t = t0, then

|z(t0)|∞ = |x(t0)− ỹ(t0)|∞ = |x0 − y0|∞ . (51)
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Otherwise, t = T which follows either from step 4b) and the continuity of z(·) (if T is at the
boundary of Θ) with

|z(T )|∞ ≤ eµ(T−t′)|z(t′)|∞ + |µ|
∫ T

t′
eµ(T−s)|δ(s)|2 ds (52)

or from step 4c) and the continuity of z(·) (if T is at the boundary of int(I) \Θ) with

|z(T )|∞ ≤ 2‖δ(·)‖L∞ . (53)

Step 5: We show that if ∆ = (t′, t′′) is a (maximal) component of Θ with smallest value t′ ∈ I,
then either t′ = t0 or |z(t′)|∞ ≤ 2‖δ(·)‖L∞ .

Indeed, if t′ > t0, then in each left neighborhood (t′ − ε, t′) there is a point τε /∈ Θ, since
otherwise one can extend ∆ to the left in Θ and it will not be maximal in Θ. Thus for every
ε = 1

k , k ∈ N, there is a τk ∈ (t′− 1
k , t
′) \Θ. As in step 4c we get |z(τk)|∞ ≤ 2‖δ(·)‖L∞ , k ∈ N. By

the continuity of z(·) and its norm, we get |z(t′)|∞ ≤ 2‖δ(·)‖L∞ .
Step 6: We show that the inequality

|z(t)|∞ ≤ max{eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) · ‖δ(·)‖L∞}+ |µ| ·
∫ t

t0
eµ(t−s)|δ(s)|2 ds (54)

holds for all t ∈ I.
Step 6a) We prove that (54) holds for t ∈ Θ.

Take a (maximal) component ∆ = (t′, t′′) of Θ. By step 5, either t′ = t0 or |z(t)|∞ ≤ 2‖δ(·)‖L∞ .
If t′ = t0, then by step 4b (or (52) for t′′ = T ) we have for t ∈ ∆ = [t0, t′′]

|z(t)|∞ ≤ eµ(t−t0)|z(t0)|∞ + |µ| ·
∫ t

t0
eµ(t−s)|δ(s)|2 ds

≤ max{eµ(t−t0)|z(t0)|∞ , 2eµ+(t−t0) · ‖δ(·)‖L∞}+ |µ| ·
∫ t

t0
eµ(t−s)|δ(s)|2 ds

which proves (54) in this case together with |z(t0)|∞ = |x0 − y0|∞ .
Let t′ > t0. Then by step 5, |z(t′)|∞ ≤ 2‖δ(·)‖L∞ and by this inequality and (45) we have for
t ∈ ∆

|z(t)|∞ ≤ eµ(t−t′) · 2‖δ(·)‖L∞ + |µ| ·
∫ t

t′
eµ(t−s)|δ(s)|2 ds

≤ max{eµ(t−t0)|z(t0)|∞ , 2eµ+(t−t0) · ‖δ(·)‖L∞}+ |µ| ·
∫ t

t0
eµ(t−s)|δ(s)|2 ds .

Trivially, (54) holds by (51) for t = t0. Thus we have shown that (54) holds in each component of
Θ, hence in the closure of Θ (by the continuity of z(·)).
Step 6b) We prove that (54) holds for t ∈ I \Θ.
By step 4c or (53) (if T ∈ bd(Θ)), we have to distinguish three cases, namely t = t0, t ∈ (t0, T )
and t = T . In the first two cases we have |z(t0)|∞ = eµ(t0−t0)|z(t0)|∞ by (51) or |z(t)|∞ ≤
2‖δ(·)‖L∞ by (50) so that (54) holds. For the third case we use the inequality (53). Therefore, the
estimate (54) follows immediately in all cases.

We now prove a version of Filippov’s Theorem for SOSL maps with inner and outer pertur-
bations similar to the OSL case in [29, Theorem 3.2] and [30, Theorem 3.1] with a new proof
idea.
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Corollary 3.8 (Filippov-type theorem for SOSL maps with inner and outer perturbations). Let
F : I × Rn ⇒ Rn satisfy the assumptions (A1)–(A5) and let y(·) satisfying the perturbed inclu-
sion (5) with vector perturbations ε(·) ∈ L1(I), δ(·) ∈ L∞(I).

Then, there exists a solution x(·) of (1) such that for all t ∈ I

|y(t)− x(t)|∞ ≤ max
{
eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) ·

(
‖δ(·)‖L∞ + ‖ε(·)‖L1

)}
+ |µ| ·

∫ t

t0
eµ(t−s)|δ(s)|2 ds+

(
|µ|
∫ t

t0
eµ(t−s) ds+ 1

)
·
∫ t

t0
|ε(s)|2 ds (55)

≤ max
{
eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) ·

(
‖δ(·)‖L∞ + ‖ε(·)‖L1

)}
+ C1(µ)‖δ(·)‖L∞ + C2(µ)‖ε(·)‖L1 (56)

with C1(µ) = |µ| ·maxt∈I
∫ t
t0
eµ(t−s) ds, C2(µ) = C1(µ) + 1.

Proof. The function z(t) = y(t)−
∫ t
t0
ε(s) ds is AC with

ż(t) = ẏ(t)− ε(t) ∈ F (t, y(t) + δ(t)), z(t0) = y(t0) = y0

satisfies the differential inclusion (35) with right-hand side F (t, z(t) + δ̃(t)) and a new inner vector
perturbation δ̃(t) = δ(t) +

∫ t
t0
ε(s) ds. δ̃(·) is also an L∞-function with

|δ̃(t)|2 ≤ |δ(t)|2 +
∫ t

t0
|ε(r)|2 dr , ‖δ̃(·)‖L∞ ≤ ‖δ(·)‖L∞ + ‖ε(·)‖L1 .

Theorem 3.7 guarantees the existence of a solution x(·) of the original differential inclusion (1)
with the estimate (36). Then,

|y(t)− x(t)|∞ ≤ |y(t)− z(t)|∞ + |z(t)− x(t)|∞

≤ |
∫ t

t0
ε(s) ds|∞ + max

{
eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) · (‖δ(·)‖L∞ + ‖ε(·)‖L1)

}
+ |µ| ·

∫ t

t0
eµ(t−s)

(
|δ(s)|2 +

∫ s

t0
|ε(r)|2 dr

)
ds

≤ max
{
eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) ·

(
‖δ(·)‖L∞ + ‖ε(·)‖L1

)}
+ |µ| ·

∫ t

t0
eµ(t−s)|δ(s)|2 ds+

(
|µ|
∫ t

t0
eµ(t−s) ds+ 1

)
·
∫ t

t0
|ε(s)|2 ds .

Note that C1(µ) in Corollary 3.8 can be calculated as 0 for µ = 0 and estimated by 1 for µ < 0.

Remark 3.9. Note that the estimate (56) in the SOSL case proves the conjecture of [30, Re-
mark 3.2] and provides order 1 with respect to the norm of the inner perturbation ‖δ(·)‖L∞ and of
the outer perturbation ‖ε(·)‖L1. In the OSL case in [30, Theorem 3.1] the corresponding estimate

|y(t)− x(t)|2 ≤ eµ(t−t0)|y0 − x0|2 +
∫ t

t0
eµ(t−s)|ε(s)|2 ds+ C

√∫ t

t0
e2µ(t−s)|δ(s)|2 ds (57)

(with a constant C depending only on µ, CB, CF ) is of order 1 in the outer perturbation but of order
1
2 in the inner perturbation. Hence, the SOSL case provides a better order of the estimates which
is also visible in the second motivation of Subsec. 2.2. Under the boundedness assumption (A1)
not only the solutions of the perturbed system (5) by Lemma 3.4 are bounded but also the states
yj and velocities wj of the Euler’s method uniformly in the step-size h (see the reasoning in [30]
for the OSL case). Then ‖δ(·)‖∞ = O(h) holds for the SOSL and the OSL case, but only for the
SOSL case the estimate for the Euler polygons in (13) would be O(h).
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A direct proof of Corollary 3.8 following the lines of the proof in [30, Theorem 3.1] in the
OSL case may improve the constants C1(µ) and C2(µ). On the other hand, the measurability
of F (·, x + δ(·)) is a subtle issue (see for results in [21, Proposition 3.5] for continuous δ(·)) and
would need either an additional upper Scorza-Dragoni property [1, Sec. 5] or another existence
result requiring only a strong measurable selection of F (·, x) plus assumptions on its boundedness
(see [64, Chap. 3, Theorem 8.13 and following results]).

3.3 Stability and approximation results

From the presented results we can easily derive stability results for reachable sets with respect to
the initial sets or the vector perturbations.

Definition 3.10. Let X0 ⊂ Rn be a nonempty initial set. The reachable set R(t, t0, X0), some-
times denoted as RF (t, t0, X0), of the differential inclusion (1) at a given time t ∈ I with initial
condition x(t0) ∈ X0 and right-hand side F is defined as the set of all end points of solutions at
this time, i.e.

R(t, t0, X0) =
{
x(t) ∈ Rn : x(·) is a feasible solution on [t0, t] of (1) with x(t0) ∈ X0 } .

Corollary 3.11. For reachable sets of (1) starting from two compact, nonempty initial sets
X0, Y 0 ⊂ Rn and F : I × Rn ⇒ Rn satisfying the assumptions (A1)–(A5) we have the estimate

dH(R(t, t0, X0),R(t, t0, Y 0)) ≤ eµ(t−t0) dH(X0, Y 0) for t ∈ I

and weak (set-valued) exponential stability holds if the SOSL constant µ is negative and t→∞.

The same estimate is stated in [29, Theorem 3.2] for the OSL case. Note that the OSL and
SOSL estimate do not differ, since the error terms with respect to the initial condition coincide.

Corollary 3.12. Let X0 ⊂ Rn be a compact, nonempty set and let the assumptions of Corol-
lary 3.8 be satisfied. If Rδ,ε(t, t0, X0) denotes the reachable set of the perturbed inclusion (5) at
time t ∈ I with initial set X0, then

dH(R(t, t0, X0),Rδ,ε(t, t0, X0)) ≤ 2eµ+(t−t0)(‖δ(·)‖L∞+ ‖ε(·)‖L1

)
+ C1(µ)‖δ(·)‖L∞+ C2(µ)‖ε(·)‖L1

with C1(µ), C2(µ) as in Corollary 3.8.

This result is a direct result of Corollary 3.8. The next approximation result is formulated
in the spirit of the classical Filippov Theorem 1.1 and focuses on distances of graphs of the two
right-hand sides.

Proposition 3.13. Let F : I×Rn ⇒ Rn satisfy the assumptions (A1)–(A5), and let GraphF (t, ·)
be measurable (w.r.t. to t).

(i) Let y : I → Rn be AC such that y(t0) = y0 and

dist((y(t), ẏ(t)),GraphF (t, ·)) ≤ γ(t) for a.e. t ∈ I (58)

with γ(·) ∈ L∞(I). Then there exists a solution x(·) of (1) satisfying

|y(t)− x(t)|2 ≤ max
{
eµ(t−t0)|y0 − x0|∞, 2eµ+(t−t0) ·

(
‖γ(·)‖L∞ + ‖γ(·)‖L1

)}
+ C1(µ)‖γ(·)‖L∞ + C2(µ)‖γ(·)‖L1 for t ∈ I (59)

with C1(µ), C2(µ) as in Corollary 3.8 and µ the SOSL constant of F .
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(ii) If G : I×Rn ⇒ Rn satisfies the assumptions (A1)–(A5) such that GraphG(t, ·) is measurable
(w.r.t. to t) and

d(GraphG(t, ·),GraphF (t, ·)) ≤ γ(t) for a.e. t ∈ I, (60)

then the one-sided Hausdorff distance d(RG(t, t0, y0),RF (t, t0, x0)) can be estimated by the
same right-hand side as in (59) for t ∈ I.

Proof. (i) Let y(·) be given. Then(
y(t), ẏ(t)

)
∈ GraphF (t, ·) + γ(t)B̃1(0) for a.e. t ∈ I (61)

with B̃1(0) the closed unit ball in R2n. The map H : I ⇒ R2n with

H(t) =
((
y(t), ẏ(t)

)
+ γ(t)B̃1(0)

)
∩GraphF (t, ·)

is measurable by [3, Theorem 8.2.4] and has closed, nonempty images by construction. By [3,
Theorem 8.1.4], it has a measurable selection

(
z(t), w(t)

)
∈ H(t) for t ∈ I which satisfies

|y(t)− z(t)|2 ≤ γ(t), |ẏ(t)− w(t)|2 ≤ γ(t) for a.e. t ∈ I. (62)

Then for a.e. t ∈ I

ẏ(t) = w(t) +
(
ẏ(t)− w(t)

)
∈ F (t, z(t)) +

(
ẏ(t)− w(t)

)
= F (t, y(t) + δ(t)) + ε(t) ,

where δ(·) = z(·) − y(·) ∈ L∞(I), ε(·) = ẏ(·) − w(·) ∈ L1(I). Applying Corollary 3.8 together
with (62), there exists a solution x(·) of (1), such that (59) holds for the given function y(·).
(ii) For y(t) ∈ RG(t, t0, y0) for t ∈ I, we have

ẏ(t) ∈ G(t, y(t)) for a.e. t ∈ I and y(t0) = y0 (63)

as well as
(
y(t), ẏ(t)

)
∈ GraphG(t, ·) so that (61) also holds and the proof above continues as

before by using x(t) ∈ RF (t, t0, x0).

Remark 3.14. It follows from the last proposition that the estimate (59) also holds for the (two-
sided) Hausdorff distance between the reachable sets of the inclusions (1) and (63) under the
assumption that (58) holds for the Hausdorff distance between the graphs of F and G. Then
µ = max{µF , µG} and the constants C1 and C2 are the maximal corresponding constants.

The last three claims can be considered as both approximation and stability results: if the
interval I is finite, the estimates of the Hausdorff distances between the original and “perturbed”
reachable sets in all three results are uniform in time. This also implies estimates of the distances
between the corresponding solution funnels, i.e. the union of the graphs of all solutions. On an
infinite time interval, the Hausdorff distances between the reachable sets stay small, if the SOSL
constant is non-positive and the Hausdorff distance between the initial sets or the norms of the
perturbations δ(·), ε(·) or of the bound γ(·) for the graphs are small.

For instance, let us consider the right-hand side of the differential inclusion ẋ(t) ∈ −Sign(x(t))
which is replaced by a sequence of sigmoidal or saturation functions with growing Lipschitz con-
stants. If the stability with respect to the initial value is studied with the help of the classical
Filippov Theorem 1.1 for Lipschitz right-hand side, the estimate will explode for increasing time.
Applying Theorem 3.7 for SOSL right-hand side, the estimate is uniformly bounded by the Haus-
dorff distance of the initial sets, since the SOSL constant for all functions of the sequence is 0.
The approximation estimates in this case would not suffer on exploding Lipschitz constants (which
appear in Example 2.5 if the Filippov theorem for Lipschitz right-hand side would be applied). In
contrast to the exploding estimates obtained in the classical Filippov theorem, Proposition 3.13
gives good estimates, since the graphs of the sigmoidal or saturation functions tend to the graph
of −Sign(·) and all SOSL constants are non-positive.
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4 Examples of differential inclusions with SOSL right-hand side
In this section we present examples of dynamical systems with SOSL right-hand sides. In the
case of Filippov’s regularization of discontinuous ODEs with unique solution, Theorem 3.7 implies
first order of convergence of the Euler approximants to this solution, as we have motivated in
Subsection 2.2. The numerical experiments presented here confirm this order of convergence. The
combination of the discrete and continuous Filippov-type approximation theorems was successfully
applied in [17] to obtain error estimates of the Euler method for Lipschitz differential inclusions
with state constraints and may also work in the case of SOSL mappings.

We now consider examples from differential equations based on applications.

Example 4.1. We consider the second-order differential equation on the time interval I = [0, T ]
which was introduced by Flügge-Lotz/Klotter in [40, (1.3a) and (1.5d)]

ÿ(τ) + 2Dẏ(τ) + b

ω2 sign
(
ρ1y(τ) + ρ2ẏ(τ)

)
+ y(τ) = 0 (64)

for b > 0, D > 0, ω > 0, initial value y0 =
(3

4
)
and a motion under the influence of bang-bang

controls. The example can also be found in [63, Beispiel 1.3] and with a slightly different factor
for y(τ) in [52, Example 5.2]. As mentioned in [40] the control function u(τ) = ρ1y(τ) + ρ2ẏ(τ)
anticipates the behavior of the solution component y(τ), acts as a feedback controller and precedes
or follows it in time depending on ρ = ρ2

ρ1
> 0 or ρ < 0. In [40, (1.5d)] the value b

ω2 is set to 1
and the damping factor D to 0.1.

The Filippov regularization is

ẏ1(t) = y2(t),
ẏ2(t) ∈ −2Dy2(t)− y1(t)− b

ω2 Sign(ρ1y1(t) + ρ2y2(t)).

}
(65)

Let ρ1 = 0 and ρ2 > 0:
In this case the model is similar to [58, (2)] (with the right-hand side 0 in (64) replaced by a driving
force ϕ(ητ) with a constant η and the equivalent simpler controller sign(ẏ(τ))) and comprises two
important engineering equations. One model originates from an electric circuit with capacitor,
coil, resistor (which damps the condesator charging) and rectifier eventually switching the sign of
the condensator charging driven by an excitation with a periodic alternating (AC) voltage. The
other model describes a mechanical system with a spring driven by forced vibrations with viscous
damping as well as combined dry and Coulomb friction. In the latter D and µ = b

ω2 are the
Coulomb and sliding/dry friction coefficients, respectively.

This equation is also treated in several articles on discontinuous differential equations (e.g.,
in [63, Beispiel 0.1], [21, Example 13.3] and in [46, (1.4)]. In Fig. 5 (left) the (approximated)
solution components y1(t) (blue) and y2(t) (red) are shown together with the black dashed switching
curve y2 = 0, where b

ω2 = 4, η = π, ϕ(s) = 2 cos(s), T = 6. Whenever the solution intersects with
this curve, the solution component y2(t) has a corner due to −Sign(y2) in F (t, y).

The right-hand side is SOSL with constant µF = 1. To see this, rewrite the right-hand side

of (65) as F (t, y) = Ay + b(t) − µS̃(y) with A =
(

0 1
−1 −2D

)
, the vector b(t) =

( 0
ϕ(ηt)

)
and the

set-valued map S̃(y) = {0}× Sign(y2) for y = (y1, y2) ∈ R2. The affine part Ay+ b(t) is estimated
by Lemma 2.1 with SOSL constant

µ = max
i=1,2

(
max{0, aii}+

∑
j=1,2

j 6=i

|aij |
)

= max
{

0 + |1|, max{0,−2D}+ | − 1|
}

= 1 .

It is easy to prove that S̃(·) is SOSL of constant 0 so that F is SOSL (even uniform SOSL) by
Proposition 2.4(iv) with constant µ = 1. With Lemma 2.1 and the symmetrized matrix Asym it is
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Figure 5: solution components and switching curves for Examples 4.1 and 4.2

straight forward to prove that the right-hand side F (t, ·) is even disspative (i.e. uniform OSL with
constant µF = 0).

Example 4.2. We continue Example 4.1 with the general model in [40, (1.4) and (1.5d)].
case ρ1 > 0 and ρ2 > 0:

The numerical test with the explicit Euler method on the time interval I = [0, 3π] and ρ = 1 indi-
cates graphically convergence order 1 with respect to the step size. In Fig. 5 (right) the (approxi-
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Figure 6: Euler polygons for Example 4.2, 2nd component (left) and phase portrait (right)

mated) solution components y1(t) (blue) and y2(t) (red) are shown together with the green dashed
function y1(t) + y2(t), where b

ω2 = 1, ϕ(s) = 0, T = 3π. Whenever the green function intersects
with the black dashed axis y2 = 0, the solution component y2(t) has a kink due to −Sign(y1 + y2)
in G(t, y). In Fig. 6 the second component of the Euler polygons for N ∈ {40, 80, 160, 320} subin-
tervals are shown together with the reference trajectory calculated with Nref = 20480 (dashed black
line). Note that there are corners at the phase portrait for the green trajectory around the points
(−2.5, 2.5), (1.5,−1.5) and (3.5,−4) reflecting discontinuities of the velocity when the trajectory
crosses the line of discontinuity of the right-hand side y1 + y2 = 0. All solutions in the left plot
show small zig-zagging behavior near the times t with y1(t) + y2(t) = 0.

In Table 1 the maximum errors (4th column) of the Euler iteration at each grid point are calcu-
lated for various step sizes hk with respect to the reference solution. From this data of subsequent
step sizes, the error at the k-th step is compared with the sixth step. The order is estimated and
shows roughly O(h). A least squares analysis for matching the true errors with the unknowns C
and p in Chp yields approximately C = 36.502, p = 1.4350, whereas C = 14.397 for fixed p = 1.

The speciality of this variant is the linear combination of components of the solution in the
controller deciding on the sign switch in the controller sign(y(t) + ρẏ(t)) so that it is not clear
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k Nk hk error(hk) estim. order for hk by k and 6
0 10 0.942478 51.2071 1.4401
1 20 0.471239 12.4716 1.3206
2 40 0.235619 3.3784 1.1797
3 80 0.117810 1.2293 1.0868
4 160 0.058905 0.5251 1.0166
5 320 0.029452 0.2260 0.8169
6 640 0.014726 0.1283 —

Table 1: convergence table for Example 4.2

whether the right-hand side of the differential inclusion is SOSL or not. Nevertheless, the model
fits very nicely to the choice of a basis in Rn for uniform SOSL set-valued maps in [53].

As suggested in [52] we introduce the transformed system with z1(t) = y1(t), z2(t) = y1(t) +
ρy2(t) so that we can express y2(t) = 1

ρ(z2(t)−y1(t))). Thus, we consider the equivalent differential
inclusion z′(t) ∈ G(t, z(t)) with

ż1(t) = 1
ρ

(z2(t)− z1(t)),

ż2(t) ∈ −2D̃z2(t)− (ρ+ 2D̃)z1(t)− b

ω2 Sign(z2(t)) ,

where D̃ = (D − 1
2ρ). We prove the strengthened OSL condition and consider z = (z1, z2), z̃ =

(z̃1, z̃2) ∈ R2, v = (v1, v2) ∈ G(t, z), s(z2) ∈ Sign(z2). G(t, z) is expressed as Bz − µS̃(z) with the

matrix B =
(

−1
ρ

1
ρ

−(ρ+ 2D̃) −2D̃

)
and µ, S̃(·) as in Example 4.1. The linear part z 7→ Bz is SOSL

by Lemma 2.1 with constant

µB = max
i=1,2

(
max{0, aii}+

∑
j=1,...,2

j 6=i

|aij |
)

= max
{

max{0,−1
ρ
}+ |1

ρ
|,max{0,−2D̃}+ | − (ρ+ 2D̃)|

}
= max

{1
ρ
,max{0,−2D̃}+ |ρ+ 2D̃|} .

We can argue with Proposition 2.4(iv) as in Example 4.1 to see that the transformed differential
inclusion with right-hand side G(t, z) is SOSL (even uniformly) with constant µG = µB.

We discuss analytically another higher-dimensional example with three coupled strings with
six states.
Example 4.3 ([62], [52, Example 5.3], [56, (16)]). Consider the system of three coupled springs
with dry friction of second order

y′i(t) = y3+i(t) (i = 1, 2, 3), (66)
y′4(t) ∈ −y1(t) + (y2(t)− y1(t))− y4(t)− 0.3 Sign(y4(t)), (67)
y′5(t) ∈ −(y2(t)− y1(t)) + (y3(t)− y2(t))− y5(t)− 0.3 Sign(y5(t)), (68)
y′6(t) ∈ −(y3(t)− y2(t))− y6(t)− 0.3 Sign(y6(t)) + 10 cos(πt) (69)

on t ∈ I = [0, 6] with initial condition y(0) = (−1, 1,−1,−1, 1, 1)>. With the matrix A =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 0 −1 0 0
1 −2 1 0 −1 0
0 1 −1 0 0 −1


, the set-valued map for the inhomogenity B(x) =

∑6
i=1Bi(xi)ei
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and the vector function c(t) =
∑6
i=1 ci(t)ei with the notation (16) used in Proposition 2.4 and

Bi(xi) ⊂ R, ci(t) ∈ R with

Bi(xi) =
{
{0} (i = 1, 2, 3),
−0.3 Sign(xi) (i = 4, 5, 6),

ci(t) =
{

0 (i = 1, . . . , 5),
10 cos(πt) (i = 6).

Then F (t, x) = Ax+B(x) + c(t).
The diagonal elements of A are either 0 or −1 so that the maximal sum of absolute values of

off-diagonal elements is 4 (attained in the fifth row). Hence, the function (t, x) 7→ Ax + c(t) is
SOS with constant µA = 4 by Lemma 2.1. The set-valued map B is strengthened uniform OSL
with constant 0 by Proposition 2.4(v). By Proposition 2.4(iv) the set-valued map F is strengthened
uniform OSL with constant µF = µA = 4.

Example 4.4. Inner set-valued perturbations of the differential inclusion (66)–(69) in Example 4.3
involving δi > 0, i = 4, 5, 6, yield the system

y′i(t) = y3+i(t) (i = 1, 2, 3), (70)
y′4(t) ∈ −y1(t) + (y2(t)− y1(t))− y4(t)− 0.3 Sign(y4(t) + δ4[−1, 1])), (71)
y′5(t) ∈ −(y2(t)− y1(t)) + (y3(t)− y2(t))− y5(t)− 0.3 Sign(y5(t) + δ5[−1, 1]), (72)
y′6(t) ∈ −(y3(t)− y2(t))− y6(t)− 0.3 Sign(y6(t) + δ6[−1, 1]) + 10 cos(πt) (73)

which is SOSL with constant µ = 4 due to Proposition 2.4(ii) and Example 4.3, but not strength-
ened uniform OSL.

The new differential inclusion can be seen in the light of a computer implementation of the
system of Example 4.3. In practice an algorithm implementing a discrete set-valued Euler’s method
will not test whether a floating point number yi, i = 4, 5, 6, is exactly zero or not to evaluate
−Sign(yi). Due to rounding errors one would choose an implementation which returns −Sign(0)
for the argument yi if the absolute value of yi is less or equal δi close to the floating point precision
multiplied by a factor depending on an upper bound of |yi|, i.e. |yi| ≤ δi. This is exactly the case
when yi ∈ δi[−1, 1] so that −Sign(yi + δi[−1, 1]) = [−1, 1]. Hence, inner set-valued perturbations
can incorporate strategies for taking into account rounding errors in floating point arithmetics.

Further examples in the analysis of block designs or cascading state observers [49, (4.2) and
below (A.3)] also lead to SOSL systems.

Conclusions
Studying well-posedness and regularity of solutions in perturbed problems is a topic studied per-
sistently by A. Dontchev. In the paper [35] he and his co-author proved the order of convergence 1
for the set-valued Euler’s method in the Lipschitz case and partially repeated the proof of the
celebrated Filippov theorem (Theorem 1.1) for convex and compact-valued right-hand sides, since
they were not aware of this theorem. The authors of this paper believe that continuing this
tradition is an appropriate way to honor the memory of Asen L. Dontchev.

While the form of the perturbed problem in Theorem 3.7 and Corollary 3.8 is different from
that in the original theorem of Filippov, the formulation of Proposition 3.13 is more in the spirit
of this theorem.

We are currently preparing a follow-up paper that will focus on discrete approximations of
differential inclusions for SOSL maps which will benefit from the available Filippov approximation
theorems in continuous time (presented here) and in discrete time [9].

The authors would like to thank the reviewers for their particularly careful reading, the valuable
suggestions and the encouragement for a better presentation of the material. Their remarks helped
us to improve substantially the paper.
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