URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6621-1
Titelangaben
    
  Kiermaier, Michael:
On α-points of q-analogs of the Fano plane.
  
    
    In: Designs, codes and cryptography.
      
      Bd. 90
      
      (2022)
       Heft  6
    .
     - S. 1335-1345.
    
    
ISSN 1573-7586
     
     DOI der Verlagsversion: https://doi.org/10.1007/s10623-022-01033-3
  
  
Volltext
| ![[thumbnail of s10623-022-01033-3.pdf]](https://epub.uni-bayreuth.de/style/images/fileicons/application_pdf.png) | 
 | ||||||||
| Download (307kB) | 
Abstract
Arguably, the most important open problem in the theory of q-analogs of designs is the question regarding the existence of a q-analog D of the Fano plane. As of today, it remains undecided for every single prime power order q of the base field. A point P is called an α-point of D if the derived design of D in P is a geometric spread. In 1996, Simon Thomas has shown that there always exists a non-α-point. For the binary case q = 2, Olof Heden and Papa Sissokho have improved this result in 2016 by showing that the non-α-points must form a blocking set with respect to the hyperplanes. In this article, we show that a hyperplane consisting only of α-points implies the existence of a partition of the symplectic generalized quadrangle W(q) into spreads. As a consequence, the statement of Heden and Sissokho is generalized to all primes q and all even values of q.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift | 
|---|---|
| Keywords: | Subspace design; q-analog; Fano plane; Steiner system; Subspace code | 
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik II (Computeralgebra) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut | 
| Sprache: | Englisch | 
| Titel an der UBT entstanden: | Ja | 
| URN: | urn:nbn:de:bvb:703-epub-6621-1 | 
| Eingestellt am: | 08 Sep 2022 07:46 | 
| Letzte Änderung: | 08 Sep 2022 07:46 | 
| URI: | https://epub.uni-bayreuth.de/id/eprint/6621 | 
 
        
 im Publikationsserver
 im Publikationsserver bei Google Scholar
 bei Google Scholar Download-Statistik
 Download-Statistik