Institutions of the University of Bayreuth
Chair Mathematics II (Computer Algebra)

One level up ...
Export as [RSS feed] RSS 1.0 [RSS2 feed] RSS 2.0
Group by: Year | Person | Item Type | No Grouping
Jump to: 2023 | 2022 | 2020 | 2019 | 2018 | 2017 | 2016 | 2014 | 2010
Number of items at this level: 23.

2023

Kiermaier, Michael ; Kurz, Sascha:
Classification of Δ-divisible linear codes spanned by codewords of weight Δ.
Bayreuth , 2023 . - 12 S.

2022

Kiermaier, Michael ; Kurz, Sascha ; Solé, Patrick ; Stoll, Michael ; Wassermann, Alfred:
On strongly walk regular graphs,triple sum sets and their codes.
In: Designs, codes and cryptography. Vol. 91 (September 2022) . - pp. 645-675.
ISSN 1573-7586
DOI der Verlagsversion: https://doi.org/10.1007/s10623-022-01118-z

Kiermaier, Michael:
On α-points of q-analogs of the Fano plane.
In: Designs, codes and cryptography. Vol. 90 (2022) Issue 6 . - pp. 1335-1345.
ISSN 1573-7586
DOI der Verlagsversion: https://doi.org/10.1007/s10623-022-01033-3

2020

dela Cruz, Romar ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
On the minimum number of minimal codewords.
Bayreuth , 2020 . - 9 S.

Kiermaier, Michael ; Kurz, Sascha:
On the lengths of divisible codes.
Bayreuth , 2020 . - 17 S.

2019

Heinlein, Daniel ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
Tables of subspace codes.
Bayreuth , 2019 . - 44 S.

Kiermaier, Michael ; Kurz, Sascha ; Shi, Minjia ; Solé, Patrick:
Three-weight codes over rings and strongly walk regular graphs.
Bayreuth , 2019 . - 28 S.

Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
The lengths of projective triply-even binary codes.
Bayreuth , 2019 . - 6 S.

Buratti, Marco ; Kiermaier, Michael ; Kurz, Sascha ; Nakić, Anamari ; Wassermann, Alfred:
q-analogs of group divisible designs.
Bayreuth , 2019 . - 18 S.

Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha:
Johnson type bounds for mixed dimension subspace codes.
Bayreuth , 2019 . - 16 S.

Heinlein, Daniel ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
A subspace code of size 333 in the setting of a binary q-analog of the Fano plane.
Bayreuth , 2019 . - 18 S.

Heinlein, Daniel ; Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha:
Generalized vector space partitions.
Bayreuth , 2019 . - 12 S.

2018

Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha:
Classification of large partial plane spreads in PG(6,2) and related combinatorial objects.
Bayreuth , 2018 . - 31 S.

2017

Heinlein, Daniel ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
Tables of subspace codes.
Bayreuth , 2017 . - 39 S.

Heinlein, Daniel ; Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6.
Bayreuth , 2017 . - 16 S.

Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha:
Partial spreads and vector space partitions.
Bayreuth , 2017 . - 30 S.

2016

Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha:
Constructions and Bounds for Mixed-Dimension Subspace Codes.
Bayreuth , 2016 . - 35 S.

Miriam, Schmidt:
Rank metric codes.
Bayreuth , 2016 . - VI, 67 P.
(Master's, 2016 , University of Bayreuth, Faculty of Mathematics, Physics and Computer Sciences)

Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
The order of the automorphism group of a binary q-analog of the Fano plane is at most two.
Bayreuth , 2016 . - 10 S.

2014

Honold, Thomas ; Kiermaier, Michael ; Kurz, Sascha:
Optimal binary subspace codes of length 6, constant dimension 3 and minimum distance 4.
Bayreuth , 2014 . - 24 S.

Matev, Tzanko:
Good reduction of 1-motives.
Bayreuth , 2014 . - IX, 115 P.
( Doctoral thesis, 2013 , University of Bayreuth, Faculty of Mathematics, Physics and Computer Sciences)

Feulner, Thomas:
Eine kanonische Form zur Darstellung äquivalenter Codes : Computergestützte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie.
Bayreuth , 2014 . - IX, 176 P.
( Doctoral thesis, 2013 , University of Bayreuth, Faculty of Mathematics, Physics and Computer Sciences)

2010

Müller, Jan Steffen:
Computing canonical heights on Jacobians.
Bayreuth , 2010
( Doctoral thesis, 2010 , University of Bayreuth, Faculty of Mathematics, Physics and Computer Sciences)

This list was generated on Fri Sep 13 01:33:24 2024 CEST.
[Top of page]