URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5636-9
Titelangaben
Baier, Robert ; Hessel-von Molo, Mirko:
Newton's method and secant method for set-valued mappings.
Bayreuth
,
2012
Volltext
|
|||||||||
Download (239kB)
|
Abstract
For finding zeros or fixed points of set-valued maps, the fact that the space of convex, compact, nonempty sets of ℝ n is not a vector space presents a major disadvantage. Therefore, fixed point iterations or variants of Newton’s method, in which the derivative is applied only to a smooth single-valued part of the set-valued map, are often applied for calculations. We will embed the set-valued map with convex, compact images (i.e. by embedding its images) and shift the problem to the Banach space of directed sets. This Banach space extends the arithmetic operations of convex sets and allows to consider the Fréchet-derivative or divided differences of maps that have embedded convex images. For the transformed problem, Newton’s method and the secant method in Banach spaces are applied via directed sets. The results can be visualized as usual nonconvex sets in ℝ n .
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | erscheint in:
Lirkov, Ivan ; Margenov, Svetozar D. ; Waśniewski, Jerzy (Hrsg.): Large-scale scientific computing : 8th international conference, LSSC 2011, Sozopol, Bulgaria, June 6 - 10, 2011 ; revised selected papers. - Berlin , 2012 . - S. 91-98 |
Keywords: | set-valued Newton's method; set-valued secant method; Gauß-Newton method; directed sets; embedding of convex compact sets |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-5636-9 |
Eingestellt am: | 28 Mai 2021 10:30 |
Letzte Änderung: | 07 Jun 2021 11:02 |
URI: | https://epub.uni-bayreuth.de/id/eprint/5636 |