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Abstract. For finding zeros or fixed points of set-valued maps, the fact
that the space of convex, compact, nonempty sets of Rn is not a vector
space presents a major disadvantage. Therefore, fixed point iterations or
variants of Newton’s method, in which the derivative is applied only to
a smooth single-valued part of the set-valued map, are often applied for
calculations. We will embed the set-valued map with convex, compact
images (i.e. by embedding its images) and shift the problem to the Ba-
nach space of directed sets. This Banach space extends the arithmetic
operations of convex sets and allows to consider the Fréchet-derivative
or divided differences of maps that have embedded convex images. For
the transformed problem, Newton’s method and the secant method in
Banach spaces are applied via directed sets. The results can be visualized
as usually nonconvex sets in Rn.
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1 Introduction

In this article we illustrate how Newton’s method and the similar secant method
can be applied to solve two standard problems for set-valued mappings with
convex, compact images. Our key method is to embed these problems into a
Banach space setting, which allows to reformulate them as zero-finding problems.
For references on uses of Newton’s method in Banach spaces see e.g. [12,6]. We
would like to point out that the ideas presented here differ from the pioneering
works (e.g. [10,1]) based on homotopy methods or mutational equations. We
start this article with a brief introduction to the Banach space of directed sets.
In Sections 2 and 3, we apply this to introduce the Fréchet-derivative as well as
Newton’s method and the secant method for set-valued maps. We conclude with
several numerical examples in Section 4.

1.1 Directed sets

Directed sets provide a way to interpret compact, convex, nonempty sets of Rn,
i.e. sets in C(Rn), as elements of a Banach space. They were introduced in [3]
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(see also references therein), their visualization is studied in [3, Part II]. For
C,D ∈ C(Rn) and M ∈ Rm×n, we write C +D for the Minkowski sum, λ ·C for
the multiplication with non-negative scalars and M · C for the linear image.

Definition 1. Directed intervals resp. sets
−→
A ∈ D(Rn) are defined recursively.

For n = 1, a directed interval is a pair
−→
A = (a1(l))l=±1 of two real numbers.

(We will also use the notation
−→
A =

−−→
[c, d], where a1(−1) = −c and a1(1) = d.)

In this case, the norm of
−→
A is given by ‖

−→
A‖1 = maxl=±1 |a1(l)|.

For n ≥ 2, a directed set has two components
−→
A =

(−−−−−→
An−1(l), an(l)

)
l∈Sn−1

,

given by a map
−−−→
An−1 : Sn−1 → D(Rn−1) that is uniformly bounded with respect

to ‖ · ‖n−1, and a continuous real-valued function an(·). The norm is defined by

‖
−→
A‖ := ‖

−→
A‖n := max{ sup

l∈Sn−1

‖
−−−−−→
An−1(l)‖n−1, max

l∈Sn−1
|an(l)|} .

As a space of functions on Sn−1 with values in a linear space, with the
usual pointwise definitions of addition and scalar multiplication, D(Rn) is a
linear space. With the norm defined above, D(Rn) is a Banach space that can be
equipped with a partial ordering that represents inclusion of sets (see [3, Part I]).
Sets in C(Rn) can be embedded in this Banach space via Jn : C(Rn)→ D(Rn) as

J1([c, d]) :=
−−→
[c, d] = (−c, d) ,

Jn(C) :=
(
Jn−1(Πn−1,l · Y (l, C)), δ∗(l, C)

)
l∈Sn−1

(n ≥ 2) .

Here, δ∗(l, C) denotes the support function of C in direction l ∈ Sn−1, Y (l, C)
the corresponding supporting face (i.e. the maximizers of 〈l, ·〉 on the set C), and
Πn−1,l is a linear projection which maps the orthogonal complement of span{l}
into Rn−1 and l to the origin in Rn−1, see [3, Part I] for details.

Proposition 1 ([3]). The embedding Jn : C(Rn)→ D(Rn) is positively linear:

Jn(λ · C + µ ·D) = λ · Jn(C) + µ · Jn(D) (C,D ∈ C(Rn), λ, µ ≥ 0)

In contrast to formulations using pairs of sets (see [3] for references), a di-
rected set (and thus a difference of embedded convex sets) can be visualized as
a subset in Rn which is usually nonconvex. The visualization of the directed set
is plotted with arrows (outer normals for embedded convex sets, inner ones for
their inverses) on the boundaries (see [3, Part II] for details).

2 Fréchet-Derivative for Set-Valued Maps

As D(Rm) forms a Banach space, we use the usual definition of the Fréchet-
derivative of a function

−→
F : Rn → D(Rm). To lift a set-valued map F : Rn ⇒ Rm

with images in C(Rm) to the space D(Rm), we will use the notation
−→
F (x) =

Jm(F (x)). If
−→
F : Rn → D(Rm) is Fréchet-differentiable, F is called directed

differentiable. This notion of the derivative generalizes the one of set-valued
maps for one variable studied in [8,4].
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Lemma 1 (see [2]). Let F : Rn → C(Rm) and w ∈ Rn.

(i) If F (x) = U , then
−→
F ′(x)(w) = Jm({0}).

(ii) If F (x) = r(x) · G(x) + h(x) with r : Rn → [0,∞), h : Rn → Rm, G :
Rn → C(Rm) which are (directed) Fréchet-differentiable, then

−→
F ′(x)(w) =

r′(x) · w ·
−→
G(x) + r(x) ·

−→
G ′(x)(w) + Jm({h′(x) · w}).

Especially, if F (x) = r(x) ·U with U ∈ C(Rm), then
−→
F ′(x)(w) = r′(x) ·w ·

−→
U .

(iii) If
−→
F (x) = r(x) ·

−→
G(x) +

−→
H (x) and r : Rn → R,

−→
G,
−→
H : Rn → D(Rm) are

Fréchet-differentiable, then
−→
F ′(x)(w) = r′(x) ·w ·

−→
G(x) + r(x) ·

−→
G ′(x)(w) +

−→
H ′(x)(w).

Proof. (i) A constant map in a Banach space has 0 as Fréchet-differential.
(ii) follows immediately from (iii) with

−→
G(x) = Jm(G(x)), Jm(r(x) · G(x)) =

r(x) · Jm(G(x)) and
−→
H (x) = Jm({h(x)}). Since −Jm({h(x)}) = Jm({−h(x)})

we can directly show from the definition that
−→
H ′(x)(w) = Jm({h′(x) · w}).

(iii) Clearly, the sum and the product of two functions are Fréchet-differentiable,
if the operands have this property. ut

We now study explicit formulas for the Fréchet-derivative.

Proposition 2. Let F : Rn → C(Rm) and w, x ∈ Rn.
(i) If m = 1 and F (x) = [g(x), h(x)] with two differentiable functions g, h : Rn →
R and g(x) ≤ h(x) for all x ∈ Rn, then

−→
F is differentiable with

−→
F ′(x)(w) =

−−−−−−−−−−−−−−→
[g′(x) · w, h′(x) · w] .

(ii) If m ≥ 2, the Fréchet-differential of
−→
F (x) = (

−→
F m−1(l;x), fm(l;x))l∈Sm−1 is

−→
F ′(x)(w) = (

−→
F ′m−1(l;x)(w), f ′m(l;x) · w)l∈Sm−1 .

Proof. (i) apply Lemma 1(ii) to F (x) = g(x) + (h(x)− g(x)) · [−1, 1]
(ii) for a proof see [2, Proposition 3.6] ut

3 Newton’s Method and Secant Method

For the sake of brevity, we refer to the literature for convergence results about
iterative methods in Banach spaces. For Newton’s method see e.g. [12,5,6], for
the secant method e.g. [9] and for Gauß-Newton method e.g. [7].

3.1 Newton’s Method for Directed Sets

Problem 1. Let F : Rn → C(Rm) be given. We are looking for a solution x̂ ∈ Rn

of 0 ∈ F (x̂). Using the partial order “≤” on D(Rm) and the embedded map
−→
F ,

this problem can be transformed into Jm({0}) ≤
−→
F (x̂).

To apply Newton’s iteration for directed sets to Problem 1 we choose a
starting point x0 ∈ Rn and iteratively obtain xk+1 = xk + dk, where dk ∈ Rn
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has to solve the linear inequality

−
−→
F (xk) ≤

−→
F ′(xk)(dk) . (1)

Checking this inequality essentially means checking the positivity of a function,
which is easily realized algorithmically.

Remark 1. In many publications, e.g. in the study of necessary optimality con-
ditions in non-smooth optimization or optimal control problems, the set-valued
map F is given in the form F (x) = g(x) + H(x) with a smooth function
g : Rn → Rm and an u.s.c. map H : Rn ⇒ Rm (representing subdifferentials
or normal cones in the mentioned applications), see e.g. [5,6]. The set-valued
derivative of F is avoided and an inclusion step of the form

0 ∈ g(xk) + g′(xk) · dk +H(xk + dk)

is studied. While in this case the computation of dk typically requires a nonlinear
inclusion to be solved, for this splitting of F (with Fréchet-differentiable

−→
H )

Newton’s method as suggested above leads to an inclusion problem linearly in
dk, since Newton’s method in (1) demands a solution of

−Jm({g(xk)})−
−→
H (xk) ≤ Jm({g′(xk) · dk}) +

−→
H ′(xk)(dk) .

Problem 2. Let G,H : Rn → C(Rm) be given. We are looking for a solution
x̂ ∈ Rn of G(x̂) = H(x̂). Transformed to D(Rm), this reads

−→
G(x̂) =

−→
H (x̂).

Using
−→
F =

−→
G −

−→
H , Newton’s iteration with directed sets for this problem

proceeds similarly to the one for Problem 1, with the difference that the updates
dk have to solve the linear equation

−→
F ′(xk)(dk) = −

−→
F (xk) . (2)

3.2 Secant Method Based on Directed Sets

To apply the secant method as studied e.g. in [11,9], we need a notion of divided
differences. Set-valued divided differences in one variable are studied e.g. in [8,4].
Following [11], we introduce multivariate divided differences for directed sets.

Definition 2. Let
−→
F : Rn → D(Rm) and u, v, w ∈ Rn be given such that uj 6= vj

for j = 1, . . . n. We define

−→
F [u, v]j := 1

uj−vj
·
(
−→
F (u1, . . . , uj−1, uj , vj+1, . . . , vn)

−
−→
F (u1, . . . , uj−1, vj , vj+1, . . . , vn)

)
∈ D(Rm) ,

−→
F [u, v](w) :=

∑n
j=1 wj ·

−→
F [u, v]j ∈ D(Rm) .

In the limit for u→ v, this definition yields the Fréchet-differential
−→
F ′(u).
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This approach generalizes the divided differences in one variable and satisfies
the characteristic equation

−→
F [u, v](u− v) =

−→
F (u)−

−→
F (v) (u, v ∈ Rn) . (3)

To apply the secant method to Problem 1, one chooses two starting points
x−1, x0 ∈ Rn and iteratively computes xk+1 = xk + dk, where dk solves

−
−→
F (xk) ≤

−→
F [xk, xk−1](dk) . (4)

To treat Problem 2 with the secant method, we again set
−→
F =

−→
G −

−→
H , choose

initial points x−1 and x0 and compute xk+1 = xk + dk, where dk solves
−→
F [xk, xk−1](dk) = −

−→
F (xk) . (5)

An advantage of (5) is that the derivative
−→
F ′ is avoided and replaced by differ-

ences of function values. It is obvious that the iterations (2) and (5) generalize
their pointwise analogues.

4 Examples

In this section we present numerical examples for the procedures proposed above.

Example 1. Let U1, . . . , UM ∈ C(Rn) be such that the vectors Jn(Ui) are lin-
early independent in D(Rn). Consider an unknown convex combination U0 =∑M
i=1 λi · Ui with coefficients λi ≥ 0, i = 1, . . . ,M and

∑M
i=1 λi = 1. In or-

der to apply Newton’s method for Problem 2 to compute the vector λ ∈ RM ,
we define G(x) =

∑M
i=1 xi · Ui for x ∈ RM and H(x) = U0, and set

−→
F (x) =∑M

i=1 xi · Jn(Ui)− Jn(U0). By Proposition 1

−→
F (x) =

M∑
i=1

(xi − λi) · Jn(Ui) and
−→
F ′(x)(w) =

M∑
i=1

wi · Jn(Ui) ,

so that the Newton step results in
M∑
i=1

dki · Jn(Ui) = −
M∑
i=1

(xki − λi) · Jn(Ui) and
M∑
i=1

(xki − λi + dki ) · Jn(Ui) = 0 .

From the assumption of linear independence we obtain dki − λi + xki = 0 for
i = 1, . . . ,M , and hence dk = −xk + λ. This means that already the first
iteration step leads to the solution x1 = x̂ = λ. We obtain the same picture for
the secant method. Since

−→
F [xk, xk−1]i =

1
xki − x

k−1
i

·
(
xki · Jn(Ui)− xk−1

i · Jn(Ui)
)

= Jn(Ui) ,

−→
F [xk, xk−1](dk) =

M∑
i=1

dki ·
−→
F [xk, xk−1]i =

M∑
i=1

dki · Jn(Ui) ,

the left-hand side of (5) equals the one of the Newton step (2).

From now on, we consider Problem 2.
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Example 2. Let α, β ∈ R and consider the functions g(v) = α‖v‖22v+βv, h(v) =
‖v‖2v for v ∈ R2. We consider Problem 2 with G,H : R → C(R2), G(x) =
g(x ·B1(0)), H(x) = h(x ·B1(0)). A simple calculation shows that g(x ·B1(0)) =
(αx3 +βx) ·B1(0) and h(x ·B1(0)) = x2 ·B1(0). The solutions for α = −1, β = 3

4
are x̂ ∈ {0,− 3

2 ,
1
2}. To eliminate the trival solution x̂ = 0, we divide the leading

term by x and obtain
−→
F (x) = (αx2 + β − x) · J2(B1(0)). For this, one has

−→
F ′(x) = (2αx− 1) ·

−→
B with

−→
B = J2(B1(0)) and

−→
F [u, v] =

1
u− v

·
(
(αu2 − u+ β)− (αv2 − v + β)

)
·
−→
B = (α(u+ v)− 1) ·

−→
B .

For the Newton step we thus get dk = −α(xk)2−xk+β
2αxk−1

, while the iteration for

the secant method results in dk = − α(xk)2−xk+β
α(xk+xk−1)−1

. In Fig. 1(a) the iterates
−→
Xk := xk · J2(B1(0)) of the secant method are depicted for the starting values
x−1 = 0, x0 = − 3

4 . Here, the iterates k = 0, 2, 3 are inverses of embedded sets
(inner normals), whereas the other iterates are embedded convex sets (outer
normals). For k = −1, the embedded origin is visualized in the plot.

In Example 3, we solve Problem 2 using the Gauß-Newton method in [7] and
the Gauß-secant method for two-dimensional directed sets. Similar to the approx-
imation of convex sets with finitely many supporting hyperplanes, we approxi-
mate a set-valued map

−→
F : Rn → D(R2) by choosing a finite number of unit vec-

tors lµ ∈ S1, µ = 1, . . . ,M and evaluating
−→
F (x) = (f1(x; η; l)η=±1, f2(x; l))l∈S1

in these directions, leading to a discretized map
−→
F M : Rn → R3M defined by

(−→
F M (x)

)
i

=


f1(x;−1; li) if i = 1, . . . ,M,

f1(x; 1; li−M ) if i = M + 1, . . . , 2M,

f2(x; li−2M ) if i = 2M + 1, . . . , 3M.

Recalling the ideas behind the Gauß-Newton method, we replace
−→
F M (x) =

0 by the minimization problem minx∈Rn ‖
−→
F M (x)‖22 which is solved iteratively

by minimizing ‖
−→
F M (xk) +

−→
F ′M (xk)(dk)‖22 or ‖

−→
F M (xk) +

−→
F M [xk, xk−1](dk)‖22,

respectively. This leads to the normal equations
−→
F ′M (xk)>

−→
F ′M (xk)(dk) = −

−→
F ′M (xk)>

−→
F M (xk) and (6)

−→
F [xk, xk−1]>

−→
F [xk, xk−1](dk) = −

−→
F [xk, xk−1]>

−→
F M (xk) (7)

as iterative steps. The (i, j)-th entry of the matrix of divided differences is given
for j = 1, 2 by the expressions

f1(xk1 , x
k+j−2
2 ;−1; li)− f1(xk+j−2

1 , xk−1
2 ;−1; li)

xkj − x
k−1
j

for i = 1, . . . ,M,

f1(xk1 , x
k+j−2
2 ; 1; li)− f1(xk+j−2

1 , xk−1
2 ; 1; li)

xkj − x
k−1
j

for i = M + 1, . . . , 2M,
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f2(xk1 , x
k+j−2
2 ); li−2M )− f2(xk+j−2

1 , xk−1
2 ; li−2M )

xkj − x
k−1
j

for i = 2M + 1, . . . , 3M,

which are much simpler to compute than the corresponding partial derivatives.
In the next nonlinear test example we are looking for parameters in the

determining matrix of an ellipsoid centered in the origin which coincides with
the unit ball.

Example 3. For x ∈ R2 we consider G(x) = A(x) ·B1(0) with A(x) =
(
x1 0
0 x2

)
,

H(x) = B1(0) in Problem 2. In this example, it is rather complicated to evaluate
the derivative of

−→
F (x) =

−→
G(x) −

−→
H (x) analytically. Clearly, x̂ = (1, 1)> is one

solution and
−→
F ′(x) = (

−→
G ′1(x; l), g2(x; l))l∈S1 with

f2(x; l) = g2(x; l)− 1 = δ∗(l, G(x))− 1 =
√
l21x

2
1 + l22x

2
2 − 1 ,

∂f2
∂x

(x; l) =
1√

l21x
2
1 + l22x

2
2

(
l21x1

l22x2

)>
.

The derivative of
−→
F ′1(x; l) within the Gauß-Newton method is complicated, since

it involves the projection to R, whereas the calculation of
−→
F [u, v](w) in the

Gauß-secant method only requires the weighted sum of differences of function
values. Table 1 demonstrates that the Gauß-secant method converges rather
rapidly, but slower than the Gauß-Newton method. In Fig. 1(b) the iterates
−→
Xk := J2(A(xk)·B1(0)) of the secant method are depicted for the starting values
x−1 = (4, 3)>, x0 = (3, 2)>. Depending on the starting values, convergence to
one of the solutions (±1,±1)> can be observed.

To sketch the outline of further research, we mention [2]. In this publication,
Newton’s method for set-valued maps is used to approximate invariant sets,
i.e. to find sets P for which g(P ) = P . This task is similar to Problem 2, if the
set is parametrized e.g. as P (x) = x·B1(0) (see Example 2) and G(x) = g(P (x)),
H(x) = h(P (x)), h(x) = x, but considerably more complicated, as the map

−→
G

depends on a directed set. This leads to a zero-finding problems of the form
0 =

−→
F (
−→
X ) = Jn(g(Vn(

−→
X )) −

−→
X , the solution of which requires much more

advanced Banach space techniques than in the present paper.
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Fig. 1. Iterates of the secant method for two examples

k xk
1 xk

2
1
2
‖
−→
F M (xk)‖22 xk

1 xk
2

1
2
‖
−→
F M (xk)‖22

-1 4.00000 3.00000 149.2847951
0 3.00000000 2.00000000 68.997425636149 3.00000 2.00000 68.9974256
1 1.01002370 1.00647268 0.001644629887 0.98748 0.98710 0.0032343
2 1.00000078 1.00000078 0.000000000012 0.99942 0.99933 0.0000081

Table 1. Iterates xk of the Gauß-Newton and the secant method for Example 3


