URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5634-8
Titelangaben
Baier, Robert ; Farkhi, Elza ; Roshchina, Vera:
The directed and Rubinov subdifferentials of quasidifferentiable functions, Part II : Calculus.
Bayreuth
,
2011
Volltext
|
|||||||||
Download (263kB)
|
Abstract
We continue the study of the directed subdifferential for quasidifferentiable functions started in [R. Baier, E. Farkhi, V. Roshchina: The directed and Rubinov subdifferentials of quasidifferentiable functions, Part I: Definitions and examples, Nonlinear Anal., same volume]. Calculus rules for the directed subdifferentials of sum, product, quotient, maximum and minimum of quasidifferentiable functions are derived. The relation between the Rubinov subdifferential and the subdifferentials of Clarke, Dini, Michel-Penot, and Mordukhovich is discussed. Important properties implying the claims of Ioffe's axioms as well as necessary and sufficient optimality conditions for the directed subdifferential are obtained.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | erscheint in:
Nonlinear Analysis : Theory, Methods & Applications. Bd. 75 (2012) Heft 3 . - S. 1058-1073 DOI: https://doi.org/10.1016/j.na.2011.04.073 |
Keywords: | subdifferentials; quasidifferentiable functions; differences of sets; directed sets; directed subdifferential; Rubinov subdifferential |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-5634-8 |
Eingestellt am: | 28 Mai 2021 10:11 |
Letzte Änderung: | 08 Jun 2021 08:06 |
URI: | https://epub.uni-bayreuth.de/id/eprint/5634 |