
The Directed and Rubinov Subdifferentials

of Quasidifferentiable Functions,

Part II: Calculus

Robert Baiera,1,∗, Elza Farkhib,1, Vera Roshchinac

aChair of Applied Mathematics, University of Bayreuth, 95440 Bayreuth, Germany
bSchool of Mathematical Sciences, Sackler Faculty of Exact Sciences,

Tel Aviv University, 69978 Tel Aviv, Israel
cCIMA-UE, FCT - Ciência 2008, University of Evora, 7000-671 Évora, Portugal
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1. Introduction

The directed subdifferential was first introduced in [5] for a difference
of convex (DC) function f = g − h with g, h convex, as the difference of
the convex subdifferentials of g and h, which are embedded in the Banach
space of directed sets [3, 4]. In [6] this definition has been extended to
the class of quasidifferentiable functions. It is computable and also may be
visualized. The Rubinov subdifferential, defined as the visualization of the
directed subdifferential, is a compact, generally non-convex set in Rn.

In the first part of this work [6], the definition and basic properties of
the directed subdifferential for quasidifferentiable (QD) functions have been
discussed. Furthermore, the subclasses of amenable and lower-Ck functions
are studied and their directed subdifferentials are calculated. In this paper,
we show that the desired properties (axioms) of the subdifferentials [25] also
hold in this class. Further, we obtain necessary and sufficient optimality
conditions and calculus rules in terms of the directed subdifferential, some of
which have been proved in [5] for the case of DC functions. We also compare
the Rubinov subdifferential with the subdifferentials of Clarke, Dini, Michel-
Penot, and Mordukhovich. Its intermediate position, as a superset of the Dini
subdifferential and a subset of the Michel-Penot and Clarke subdifferential,
enables to obtain a strong necessary condition for a minimum in terms of
its positive part (which is identical to the Dini subdifferential), as well as
a strong sufficient condition in terms of the interior of the same part. In a
symmetric way, the corresponding optimality conditions for a maximum are
available via the negative part (which equals the Dini superdifferential).

The paper is organized as follows. In Section 2 we briefly remind the
definitions of the directed sets, their visualization and the related definitions
of the directed and Rubinov subdifferentials. In more details, the supremum
and infimum of directed sets are studied. In Section 3 we discuss calculus
rules for the directed subdifferential of a QD function, and in Section 4 we
provide optimality conditions in terms of the directed and Rubinov subdif-
ferentials. In Section 5 we discuss Ioffe’s axioms and the relations between
the directed subdifferential and other well-known subdifferentials.

We refer the reader to the first part of the paper [6] for more details
on definition, basic properties of the directed subdifferential and examples
of QD functions. As this article is designed as a second part of [6], only
essentials in [6] are repeated here to save space, however, this article should
be understandable for any reader with basic knowledge of convex analysis
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and nonsmooth optimization.

2. Directed subdifferential of quasidifferentiable functions

Directed subdifferential was first introduced in [5] for DC functions, and
then extended to the quasidifferentiable functions in [6]. The main idea is
based on the concept of directed sets introduced and studied in [3, 4]. In
this section we briefly remind some definitions related to the Banach space
of directed sets, introduce and prove several important properties, and define
the directed and Rubinov subdifferentials of a QD function.

Throughout the paper we apply the notation introduced in [6, Sec. 2–4].

2.1. Directed sets

We again denote by C(Rn) the cone of convex compact nonempty subsets
of Rn and by D(Rn) the Banach space of the n-dimensional directed sets.

A directed set
−→
A consists of two components (

−−−−→
An−1(l), an(l)) parametrized

by unit vectors l ∈ Sn−1 for n ≥ 2. For directed intervals, i.e. the case of
n = 1, only the second component a1(l) appears. The arithmetic operations
are defined componentwise.

In C(Rn), we denote by +, · the usual Minkowski sum resp. the scalar
multiplication of sets by a constant factor. The pointwise negation is denoted
by 	A and A	 B = A+ (	B) is the algebraic difference for A,B ∈ C(Rn).

In the vector space D(Rn), −
−→
A denotes the opposite element of

−→
A , that is

(−
−→
A ) +

−→
A =

−→
0 .

The embedding Jn maps C(Rn) into D(Rn) and is defined — as usual

for directed sets — recursively by setting an(l) = δ∗(l, A) and
−−−−→
An−1(l) =

Jn−1(Pn−1,l(Y (l, A))). Hence, not only the support function, but also the
supporting face projected to Rn−1 and embedded in D(Rn−1) are saved in
the two components of a directed set. The embedding is positively linear,
i.e.

Jn(λA+ µB) = λJn(A) + µJn(B) (λ, µ ≥ 0) . (1)

We refer the reader to [3, 4, 5, 6] for detailed discussions and illustrative
examples.

It is convenient to define the operations of supremum and infimum on
directed sets. We will use them later to express the directed subdifferential
of max-type and min-type functions. Such definitions have already been
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given in [3] for two directed sets, here we extend the definition to any finite
number of directed sets.

Definition 2.1. Let {
−→
A i}i∈I ⊂ D(Rn), where I is a finite index set.

(i) For n = 1 and directed intervals
−→
A i =

−−−−−→
[α−i , α

+
i ], i ∈ I, let

sup
i∈I
{
−→
A i} =

−−−−−−−−−−−−→
[min
i∈I

α−i ,max
i∈I

α+
i ], inf

i∈I
{
−→
A i} =

−−−−−−−−−−−−→
[max
i∈I

α−i ,min
i∈I

α+
i ];

(ii) for a finite number of directed sets {
−→
A i}i∈I ⊂ D(Rn) with n ≥ 2, such

that −→
A i =

(−→
A i
n−1(l), a

i
n(l)
)
l∈Sn−1

,

we let

sup
i∈I
{
−→
A i} =

(
sup
i∈I1(l)

{
−→
A i
n−1(l)}, sup

i∈I
{ain(l)}

)
l∈Sn−1

,

inf
i∈I
{
−→
A i} =

(
inf

i∈I2(l)
{
−→
A i
n−1(l)}, inf

i∈I
{ain(l)}

)
l∈Sn−1

,

where we used the two sets of active indices

I1(l) = {i ∈ I | ain(l) = max
j∈I

ajn(l)}, I2(l) = {i ∈ I | ain(l) = min
j∈I

ajn(l)}.

We will use the notation supi∈I{Ci} = co
(⋃

i∈I Ci
)

for convex sets Ci ∈
C(Rn), i ∈ I.

It is not difficult to observe that for any finite collection of directed sets

{
−→
A i}i∈I and any two subsets I1 and I2 of I such that I1 ∪ I2 = I, we have

sup{sup
i∈I1
{
−→
A i}, sup

i∈I2
{
−→
A i}} = sup

i∈I
{
−→
A i}. (2)

We next show that the supremum and infimum operators are symmetric
to each other which was already stated, but not proved in [3, Remark 4.7].

Proposition 2.2. Let {
−→
A i}i∈I ⊂ D(Rn) be a finite collection of directed

sets. Then
sup
i∈I
{
−→
A i} = − inf

i∈I
{−
−→
A i}. (3)
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Proof. For directed intervals
−→
A i =

−−−−→
[a−i , a

+
i ] ∈ D(R), i ∈ I we have

sup
i∈I
{
−→
A i} =

−−−−−−−−−−−−→
[min
i∈I

α−i ,max
i∈I

α+
i ]

=
−−−−−−−−−−−−−−−−−−−−−→
[−max

i∈I
{−α−i },−min

i∈I
{−α+

i }]

= −
−−−−−−−−−−−−−−−−−→
[max
i∈I
{−α−i },min

i∈I
{−α+

i }] = − inf
i∈I
{[−α−i ,−α+

i ]}

= − inf
i∈I
{−
−→
A i}.

Assume (3) holds for n ≤ k for some k ≥ 1. We prove it for n = k + 1. We
have by the definition of supremum and our inductive assumption

sup
i∈I
{
−→
A i} =

(
sup
i∈I1(l)

{
−→
A i
n−1(l)}, sup

i∈I
{ain(l)}

)
l∈Sn−1

=

(
− inf

i∈I1(l)
{−
−→
A i
n−1(l)},− inf

i∈I
{−ain(l)}

)
l∈Sn−1

= −
(

inf
i∈I2(l)

{−
−→
A i
n−1(l)}, inf

i∈I
{−ain(l)}

)
l∈Sn−1

= − inf
i∈I
{−
−→
A i} ,

since I1(l) = I2(l) = {i ∈ I | − ain(l) = minj∈I(−ajn(l))} in this case. �

Note that for two convex sets A,B ∈ C(Rn) we have sup{Jn(A), Jn(B)} =
Jn(co{A∪B}). This relation proven in [3, Proposition 4.20] can be general-
ized for any finite number of sets.

Lemma 2.3. Let Ci ∈ C(Rn) for i ∈ I, where I is a finite index set. Then

sup
i∈I
{Jn(Ci)} = Jn(sup

i∈I
{Ci}) = Jn

(
co
(⋃
i∈I

Ci
))
,

moreover,

inf
i∈I
{−Jn(	Ci)} = −Jn(sup

i∈I
{	Ci}) = −Jn

(
	 co

(⋃
i∈I

Ci
))
.
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Proof. The first relation follows from [3, Proposition 4.20] (where it is
proved for two sets). We get what we need by applying the result to two of
the sets, then their convex hull and the third set, and so on, until all sets
have been considered. The second relation follows from Proposition 2.2. �

We will also need the following technical statement.

Lemma 2.4. Let {
−→
A i}i∈I be a finite number of directed sets in D(Rn), and

−→
B ∈ D(Rn) as well. Then

sup
i∈I
{
−→
A i}+

−→
B = sup

i∈I
{
−→
A i +

−→
B }, inf

i∈I
{
−→
A i}+

−→
B = inf

i∈I
{
−→
A i +

−→
B }.

Proof. For n = 1 we have
−→
A i =

−−−−→
[a−i , a

+
i ], i ∈ I;

−→
B =

−−−−→
[b−i , b

+
i ]. Then

sup
i∈I
{
−→
A i}+

−→
B =

−−−−−−−−−−−−−−−→[
min
i∈I
{a−i },max

i∈I
{a+

i }
]

+
−−−−→
[b−, b+]

=
−−−−−−−−−−−−−−−−−−−−−−−→[
min
i∈I
{a−i + b−},max

i∈I
{a+

i + b+}
]

= sup
i∈I

{−−−−−−−−−−−−−→[
a−i + b−, a+

i + b+
]}

= sup
i∈I

{−→
A i +

−→
B
}
.

Now assume that supi∈I{
−→
A i} +

−→
B = supi∈I{

−→
A i +

−→
B } holds for n = k ≥ 1.

We prove with induction that it also holds true for n = k + 1. We have

sup
i∈I
{
−→
A i}+

−→
B =

(
sup
i∈I1(l)

{
−→
A i
n−1(l)}, sup

i∈I
{ain(l)}

)
l∈Sn−1

+
(−→
B n−1(l), bn(l)

)
l∈Sn−1

=

(
sup
i∈I1(l)

{
−→
A i
n−1(l) +

−→
B n−1(l)}, sup

i∈I
{ain(l) + bn(l)}

)
l∈Sn−1

= sup
i∈I
{
−→
A i +

−→
B },

where in the last two lines we have used the inductive assumption and the
definition of the supremum (observe that the index set I1(l) remains the
same). The relevant relation for infimum is obtained analogously. �
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One can define an order relation in the space D(Rn) (cf. [3, Defini-

tion 4.6]). For
−→
A,
−→
B ∈ D(Rn)

−→
A ≤

−→
B : ⇐⇒ (i) ∀ l ∈ Sn−1 : an(l) ≤ bn(l) (4)

(ii) if n ≥ 2 and l ∈ Sn−1 with an(l) = bn(l), (5)

then
−−−−→
An−1(l) ≤

−−−−→
Bn−1(l). (6)

It is not difficult to observe (see [3, Theorem 4.17]) that for A,B ∈ C(Rn)

Jn(A) ≤ Jn(B) ⇐⇒ A ⊂ B.

It is handy to define the directed zero in D(Rn). We let
−→
0 n = Jn({0n}).

The following properties can be obtained directly from the definitions of the
convex embedding and the directed zero, hence the proof is omitted.

Remark 2.5. It is obvious that for the zero element
−→
0 n ∈ D(Rn), the di-

rected zero defined above, and
−→
A ∈ D(Rn), the following holds by [3, Propo-

sition 4.14]:

(i)
−→
A +

−→
0 n =

−→
A −−→0 n =

−→
A,

(ii)
−→
A −

−→
A =

−→
0 n.

We remind the reader on the definition of a linear image of a directed set−→
U = limk→∞

(
Jm(Ak)− Jm(Bk)

)
with Ak, Bk ∈ C(Rm) (see the definition [6,

(6)]). Let M ∈ Rn×m and set

M
−→
U := lim

k→∞

(
Jn(MAk)− Jn(MBk)

)
. (7)

Especially, it holds

M
(
Jm(A)− Jm(B)

)
= Jn(MA)− Jn(MB) (8)

for a difference of embedded convex sets A,B ∈ C(Rm). The well-definedness
is shown in [2, Sec. 3].

To shorten later the formulation of the directed subdifferential of a sep-
arable function, we introduce the direct product of directed sets which is
based on the linear image of a directed set.
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Definition 2.6. Let Ak, Bk ∈ C(Rn), Ck, Dk ∈ C(Rm) and

−→
A = lim

k→∞

(
Jn(Ak)− Jn(Bk)

)
∈ D(Rn) ,

−→
B = lim

k→∞

(
Jm(Ck)− Jm(Dk)

)
∈ D(Rm) .

The direct product
−→
A ×

−→
B ∈ D(Rn+m) is defined as

−→
A ×

−→
B = Π>1

−→
A + Π>2

−→
B ,

where Π1 : Rn+m → Rn and Π2 : Rn+m → Rm are the canonical linear
projections with Πi(x1, x2) = xi, i = 1, 2, and Π>i is the transpose of the
corresponding matrix.

2.2. Visualization of directed sets

The visualization Vn(
−→
A ) for a directed set

−→
A ∈ D(Rn) is a compact,

generally non-convex set in Rn which consists of three parts: the convex, the
concave and the mixed-type parts, i.e.

Vn(
−→
A ) := Pn(

−→
A ) ∪Nn(

−→
A ) ∪Mn(

−→
A ) . (9)

For convex sets C,D ∈ C(Rn), we continue to use the notation C −* D and
C −· D for the geometric resp. Demyanov difference. The essential connection
between these two differences and the visualization of directed sets is given
in the following equations (see [4] and [6, Sec. 4]).

Vn( Jn (C)) = Pn(Jn (C)) = C , (10)

Vn(−Jn (C)) = Nn(Jn (C)) = 	C , (11)

Pn(Jn (C)− Jn (D)) = C −* D , (12)

Nn(Jn (C)− Jn (D)) = 	(D−* C) , (13)

coVn(Jn (C)− Jn (D)) = C −· D , (14)

Nn(−
−→
A ) = 	Pn(

−→
A ) . (15)

2.3. Quasidifferentiable functions and the directed subdifferential

For a function f : Rn → R we denote by f ′(x; l) the directional derivative
at x in direction l ∈ Sn−1. Quasidifferentiable (QD) functions are the ones
for which the directional derivative has the special DC representation

f ′(x; l) = max
u∈∂f(x)

〈l, u〉+ min
v∈∂f(x)

〈l, v〉 . (16)
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with the quasisubdifferential ∂f(x) and the quasisuperdifferential ∂f(x).
Both sets are in C(Rn) and they form one representation of the quasidiffer-
ential Df(x) = [∂f(x), ∂f(x)] which is an equivalence class of pairs of sets.
Therefore, we follow the settings in [19, Sec. III.1, 3.], namely we use the
following equivalence relation:

[U1, V1] ∼= [U2, V2] ⇐⇒ U1 	 V2 = U2 	 V1 (17)

The linear operations are defined as

[U1, V1] + [U2, V2] = [U1 + U2, V1 + V2], (18)

λ[U, V ] =

{
[λU, λV ] ∀λ ≥ 0,
[λV, λU ] ∀λ < 0.

(19)

The directed subdifferential for a QD function is defined as
−→
∂ f(x) = Jn (∂f(x))− Jn

(
	∂f(x)

)
, (20)

its visualization Vn(
−→
∂ f(x)) is called the Rubinov subdifferential ∂Rf(x).

It was shown in [6] that the directed and Rubinov subdifferentials are well-
defined, i.e. do not depend on the chosen pair representing the equivalence
class. Moreover, this definition coincides with the earlier definition of the
directed subdifferential of DC functions originally given in [5].

3. Calculus rules for the directed subdifferential for quasidifferen-
tiable functions

Apart from the sum rule, which is the cornerstone of the subdifferential
calculus, we prove other important rules, such as multiplication, division and
a simple form of superposition. Observe that all these rules hold in the form
of equalities. The proofs rely on corresponding results for the quasidifferential
(see [19]), which we repeat here for the reader’s convenience.

The following result is due to [19, Chapter III, Theorem 2.1].

Theorem 3.1 (Sum Rule and More Properties).

(i) Let the functions f, f1, f2 : Rn → R be quasidifferentiable at x ∈ Rn

and λ ∈ R. Then the sum and the scalar multiple of these functions
are quasidifferentiable at x and also

D(f1 + f2)(x) = Df1(x) +Df2(x) ,

D(λf)(x) = λDf(x) , D(−f)(x) = [	∂f(x),	∂f(x)] ,

9



where the corresponding operations on the pairs of sets are defined by
(18)–(19).

(ii) For functions quasidifferentiable at a point x, the product of these func-
tions is also quasidifferentiable at x and

D(f1 · f2)(x) = f1(x)Df2(x) + f2(x)Df1(x) .

(iii) Let the function f be quasidifferentiable at a point x and f(x) 6= 0.
Then the function f1(x) = 1

f(x)
is quasidifferentiable and

Df1(x) = D
(

1

f

)
(x) = − 1

f(x)2
Df(x).

Now it is not difficult to prove the corresponding calculus results for the
directed subdifferential based on this theorem and results from Section 2.

Theorem 3.2 (Sum Rule and More Properties).
Let the functions f1, f2 : Rn → R be quasidifferentiable at x ∈ Rn. Then the
sum of these functions is quasidifferentiable at x and

−→
∂ (f1 + f2)(x) =

−→
∂ f1(x) +

−→
∂ f2(x) , (21)

−→
∂ (λf)(x) = λ

−→
∂ f(x) (λ ∈ R) . (22)

Proof. From Theorem 3.1(i) and the property of the convex embedding (1)
we have

−→
∂ (f1 + f2)(x) = Jn(∂f1(x) + ∂f2(x))− Jn

(
	
(
∂f1(x) + ∂f2(x)

))
= Jn(∂f1(x)) + Jn(∂f2(x))− Jn

(
	∂f1(x)

)
− Jn

(
	∂f2(x)

)
=
−→
∂ f1(x) +

−→
∂ f2(x).

From Theorem 3.1(ii) and (1)

−→
∂ (λf)(x) =

{
Jn(λ∂f(x))− Jn(	λ∂f(x)), λ ≥ 0

Jn(λ∂f(x))− Jn(	λ∂f(x)), λ < 0

=

{
λ(Jn(∂f(x))− Jn(	∂f(x))), λ ≥ 0

−λ(Jn(	∂f(x))− Jn(∂f(x))), λ < 0

= λ
−→
∂ f(x). �
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The next example illustrates the “inflation of size” in the representation
of the quasidifferential, if calculus rules are applied.

Example 3.3. Let f = g − h be DC with g(x) = h(x) = r‖x‖2 and x ∈ Rn,
r > 0.
Obviously f = 0 and the quasidifferential Df(0) can be represented by The-
orem 3.1(i) as [{0}, {0}]. After applying calculus rules to the DC represen-
tation such as the sum rule for quasidifferentials in Theorem 3.1(i), another
representation follows

Df(0) = Dg(0) +D(−h)(0) = Dg(0)−Dg(0)

= [Br, {0}] + [{0}, Br] = [Br, Br] .

Due to the equivalence relation (17), both representations result in the same
quasidifferential (seen as an equivalence class of pairs of sets), but if r is big,
the two representing sets (the quasisubdifferential and the quasisuperdiffer-
ential) are large sets resulting in the so-called “inflation in size”. For the
existence and construction of minimal pairs for a better representation, see
[31], [19, Sec. III.8] .

For the directed subdifferential, we are in the vector space of directed sets
and the corresponding calculation reads as

−→
∂ f(0) =

−→
∂ g(0) +

−→
∂ (−h)(0) =

−→
∂ g(0)−

−→
∂ g(0) =

−→
0 , (23)

where the sum rule in Theorem 3.2 is applied. Since the directed subdifferen-
tial just calculates a difference (which is zero), the two problems mentioned
above do not appear here.

For other subdifferentials, we usually have to use the Minkowski sum of
sets in a calculation as in (23). Thus, we would normally obtain a bigger set
and we would lose the equality.

A simple example shows that the sum rule does not hold for the Rubinov
subdifferential (i.e. the visualization of the directed subdifferential).

Example 3.4. Let us consider the function

f(x) = max{−2x, 3x}. (24)

Observe that for l ∈ S0 = {−1, 1} we can write

f ′(0, l) = f(l) = max
v∈[−2,3]

v · l + min
w∈{0}

w · l,

11



hence, Df(0) = [ [−2, 3], {0} ], and by Remark 2.5

−→
∂ f(0) = J1 ([−2, 3])− J1 (	{0}) = J1 ([−2, 3])− J1 ({0}) = J1 ([−2, 3]) .

Analogously,
−→
∂ (−f)(0) = −J1 (	[−3, 2]) = −J1 ([−2, 3]). Applying the sum

rule for ϕ = f + (−f) = 0, we get

−→
∂ ϕ(0) =

−→
∂ f(0) +

−→
∂ (−f)(0) = J1 ([−2, 3])− J1 ([−2, 3]) =

−→
0 1 ,

but

V1(
−→
∂ ϕ(0)) = {0} ( [−5, 5] = [−2, 3] + [−3, 2]

= V1(
−→
∂ f(0)) + V1(

−→
∂ (−f)(0)).

This example demonstrates that we can only hope for a sum rule inclusion

Vn(
−→
∂ (f1 + f2)(x)) ⊂ Vn(

−→
∂ f1(x)) + Vn(

−→
∂ f2(x)) (25)

for the Rubinov subdifferential (and not an equality as for the directed sub-
differential).

Proposition 3.5. Let the functions f1, f2 : Rn → R be quasidifferentiable at
x ∈ Rn. Then the product of these functions is quasidifferentiable at x and

−→
∂ (f1 · f2)(x) = f1(x)

−→
∂ f2(x) + f2(x)

−→
∂ f1(x). (26)

Proof. We need to consider different signs of f1(x) and f2(x). First assume
that f1(x), f2(x) ≥ 0. Then by Theorem 3.1(i) and (1) we have (x is omitted
here for the sake of brevity)

−→
∂ (f1 · f2) = Jn(f1∂f2 + f2∂f1)− Jn

(
	
(
f1∂f2 + f2∂f1

))
= f1Jn(∂f2) + f2Jn(∂f1)− f1Jn

(
	∂f2

)
− f2Jn

(
	∂f1

)
= f1

[
Jn(∂f2)− Jn

(
	∂f2

)]
+ f2

[
Jn(∂f1)− Jn

(
	∂f1

)]
= f1

−→
∂ f2 + f2

−→
∂ f1.

Analogously, for f1(x) ≥ 0 and f2(x) < 0 we set g = −f and g1 = f1,
g2 = −f2 > 0. Applying the first case for g yields

−→
∂ g = g1

−→
∂ g2 + g2

−→
∂ g1 = f1

−→
∂ (−f2)− f2

−→
∂ f1 .

12



Eq. (22) in Theorem 3.2 shows that
−→
∂ (−f2) = −

−→
∂ f2 and hence

−→
∂ f = −

−→
∂ g = f1

−→
∂ f2 + f2

−→
∂ f1 .

We obtain (26) for the other cases f1, f2 < 0 and f1 < 0, f2 ≥ 0 by the same
arguments. �

Proposition 3.6. Let f : Rn → R be quasidifferentiable at x ∈ Rn, and
f(x) 6= 0. Then the function f1(x) = 1

f(x)
is quasidifferentiable at x and

−→
∂

(
1

f

)
(x) = − 1

f(x)2

−→
∂ f(x). (27)

Proof. By Theorem 3.1(iii) and (1) we have (with omitted argument x)

−→
∂

(
1

f

)
(x) = Jn

(
	 1

f 2
∂f

)
− Jn

(
	
(
− 1

f 2
∂f

))
=

1

f 2
Jn
(
	∂f

)
− 1

f 2
Jn (∂f)

= − 1

f 2

[
Jn (∂f)− Jn

(
	∂f

)]
= − 1

f 2

−→
∂ f. �

The next corollary corresponds to the calculus rule for the quasidifferen-
tial in [19, Sec. III.2, Corollary 2.1].

Corollary 3.7. Let f1, f2 : Rn → R, f2(x) 6= 0. Then

−→
∂

(
f1

f2

)
(x) =

1

f2(x)2

(
f2(x)

−→
∂ f1(x)− f1(x)

−→
∂ f2(x)

)
.

Proof. From Propositions 3.5 and 3.6 we have

−→
∂

(
f1

f2

)
(x) = f1(x)

−→
∂

(
1

f2

)
(x) +

1

f2(x)

−→
∂ f1(x)

= −f1(x) · 1

f2(x)2

−→
∂ f2(x) +

1

f2(x)

−→
∂ f1(x)

=
1

f2(x)2

(
f2(x)

−→
∂ f1(x)− f1(x)

−→
∂ f2(x)

)
. �
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In nonsmooth optimization it is important to be able to deal with min-
type and max-type functions. To prove the corresponding calculus rules, we
need the following result from [19, Sec. III.2, Theorem 2.2].

Theorem 3.8. Let the functions f1, . . . , fm be defined on an open set X ⊂
Rn and quasidifferentiable at a point x ∈ X. Let I = {1, . . . ,m} and

ϕ1(x) = max
i∈I

fi(x), ϕ2(x) = min
i∈I

fi(x).

Then the functions ϕ1 and ϕ2 are quasidifferentiable at x and

Dϕ1(x) = [∂ϕ1(x), ∂ϕ1(x)], Dϕ2(x) = [∂ϕ2(x), ∂ϕ2(x)],

where

∂ϕ1(x) = co
⋃

k∈I1(x)

∂fk(x)	
∑

i∈I1(x),i 6=k

∂fi(x)

 ,

∂ϕ1(x) =
∑

k∈I1(x)

∂fk(x), ∂ϕ2(x) =
∑

k∈I2(x)

∂fk(x),

∂ϕ2(x) = co
⋃

k∈I2(x)

∂fk(x)	
∑

i∈I2(x),i 6=k

∂fi(x)

 .

Here, [∂fk(x), ∂fk(x)] is a quasidifferential of the function fk at the point x,
I1(x) = {i ∈ I | fi(x) = ϕ1(x)}, I2(x) = {i ∈ I | fi(x) = ϕ2(x)}.

We are now ready to state the relevant result for the directed subdiffer-
ential.

Proposition 3.9. Let the functions fi : Rn → R, i ∈ I = {1, . . . ,m}, be
quasidifferentiable at a point x ∈ Rn. Let

ϕ1(x) = max
i∈I

fi(x), ϕ2(x) = min
i∈I

fi(x).

Then the functions ϕ1 and ϕ2 are quasidifferentiable at x and

−→
∂ ϕ1(x) = sup

i∈I1(x)

{
−→
∂ fi(x)},

−→
∂ ϕ2(x) = inf

i∈I2(x)
{
−→
∂ fi(x)},

where I1(x) = {i ∈ I | fi(x) = ϕ1(x)}, I2(x) = {i ∈ I | fi(x) = ϕ2(x)}.
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Proof. From Theorem 3.8 and Lemma 2.3 we have (again, the variable is
omitted for brevity)

−→
∂ ϕ1 = sup

k∈I1(x)

{
Jn

(
∂fk 	

∑
i∈I1(x),
i6=k

∂fi

)}
− Jn

(
	
∑

j∈I1(x)

∂fj

)
= sup

k∈I1(x)

{
Jn

(
∂fk 	

∑
i∈I1(x),
i6=k

∂fi

)
− Jn

(
	
∑

j∈I1(x)

∂fj

)}
= sup

k∈I1(x)

{
Jn

(
∂fk

)
+ Jn

(
	
∑

i∈I1(x),
i 6=k

∂fi

)
− Jn

(
	
∑

j∈I1(x),
j 6=k

∂fj

)
− Jn

(
	∂fk

)}
= sup

k∈I1(x)

{
Jn

(
∂fk

)
− Jn

(
	∂fk

)}
= sup

k∈I1(x)

{−→
∂ fk

}
,

where we have used property (1), Lemma 2.4 and Remark 2.5. The relation
for the pointwise min-function is obtained analogously. �

We next prove a simple composition result.

Lemma 3.10. Let A ∈ Rm×n, b ∈ Rn, x ∈ Rn, and g : Rm → R be quasi-
differentiable at y = Ax + b. Then the superposition h(x) = g(Ax + b) is
quasidifferentiable and

Dh(x) = [AT ∂g(Ax+ b), AT ∂g(Ax+ b)] ,
−→
∂ h(x) = AT−→∂ g(Ax+ b) . (28)

Proof. Observe that since g is directionally differentiable at y = Ax + b,
we have for h

h′(x; l) = lim
t↓0

g(Ax+ b+ tAl)− g(Ax+ b)

t
= g′(Ax+ b;Al).

From the definition of the quasidifferential,

h′(x; l) = g′(Ax+ b;Al)

= max
v∈∂g(Ax+b)

〈v,Al〉+ max
w∈∂g(Ax+b)

〈w,Al〉

= max
v∈∂g(Ax+b)

〈ATv, l〉+ max
w∈∂g(Ax+b)

〈ATw, l〉

= maxev∈AT ∂g(Ax+b)
〈ṽ, l〉+ maxew∈AT ∂g(Ax+b)

〈w̃, l〉,

15



the first equation in (28) follows immediately. For the directed subdifferential
we apply the definition of the linear image in (7) and get

−→
∂ h(x) = Jn(AT ∂g(Ax+ b))− Jn(AT ∂g(Ax+ b))

= AT
[
Jn(∂g(Ax+ b))− Jn(∂g(Ax+ b))

]
= AT−→∂ g(Ax+ b). �

Next we study the directed subdifferential for a separable function.

Proposition 3.11. Let n = n1+n2, x = (x1, x2) ∈ Rn and f(x) = f1(x
1)+

f2(x
2) with two QD functions fi : Rni → R. Then

−→
∂ f(x) =

−→
∂ f1(x1)×

−→
∂ f2(x2).

Proof. Let ϕ1(x) = f1(x
1), ϕ2(x) = f2(x2). Observe that f(x) = ϕ1(x) +

ϕ2(x), and with the projection matrices Πix = xi, i = 1, 2, we have Dϕ1(x) =
[∂ϕ1(x), ∂ϕ1(x)], Dϕ2(x) = [∂ϕ2(x), ∂ϕ2(x)], where

∂ϕ1(x) = ∂f1(x)× {0n2}, ∂ϕ1(x) = ∂f1(x)× {0n2},
∂ϕ2(x) = {0n1} × ∂f2(x), ∂ϕ2(x) = {0n1} × ∂f2(x).

The first equality follows e.g. from ∂ϕ1(x) = Π>1 ∂f1(Π1x) = ∂f1(x
1)×{0n2}

by Lemma 3.10. Therefore, by Theorem 3.2

−→
∂ ϕ(x) =

−→
∂ ϕ1(x) +

−→
∂ ϕ2(x)

= Jn(∂f1(x)× {0n2})− Jn
(
	
(
∂f1(x)× {0n2}

))
+ Jn({0n1} × ∂f2(x))− Jn

(
	
(
{0n1} × ∂f2(x)

))
= Jn(∂f1(x)× {0n2}+ {0n1} × ∂f2(x))

− Jn
(
	
(
∂f1(x)× {0n2}

)
+
(
	
(
{0n1} × ∂f2(x)

)))
= Jn(∂f1(x)× ∂f2(x))− Jn(	(∂f1(x)× ∂f2(x)))

=
−→
∂ f1(x)×

−→
∂ f2(x). �

4. Optimality conditions, descent and ascent directions

For directionally differentiable functions, ascent and descent directions
are characterized via positive or negative directional derivatives, see e.g. [15]
and [19, Sec. V.1, 2.].
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Definition 4.1. Let f : Rn → R be directionally differentiable, x ∈ Rn and
l ∈ Sn−1. Then

• a direction l is called ascent direction for f from x, if f ′(x; l) > 0;

• a direction l is called descent direction for f from x, if f ′(x; l) < 0;

• the point x is a strict saddle-point of f , if there exists a direction of
ascent and a direction of descent from x.

The directions of ascent/descent are easily recognizable by the directed
subdifferential. If the second component of the directed subdifferential is
positive/negative for some direction l, it is a direction of ascent resp. descent.
This fact is already known for DC functions (see [5] in which ascent and
descent directions can be discovered visually for several functions). The next
proposition generalizes [5, Proposition 5.3] to QD functions.

Proposition 4.2. Let f : Rn → R be QD, x ∈ Rn and

−→
∂ f(x) = (

−−−−−→
Dn−1(l), dn(l))l∈Sn−1 .

Then, dn(`) = f ′(x; `) and the following holds:

• If dn(l) < 0, then l is a direction of descent of f at x.

• If dn(l) > 0, then l is a direction of ascent of f at x.

• If ∃l, η ∈ Sn−1 with dn(l) > 0 and dn(η) < 0, then x is a strict saddle-
point.

Proof. From the definition (20) of the directed subdifferential and the QD
function, it follows that

dn(l) = δ∗(l, ∂f(x))− δ∗(l,	∂f(x)) = f ′(x; l) .

The three assertions follow immediately from this one by Definition 4.1. �

The known results for necessary and sufficient optimality conditions for
QD functions by [16], [19, Chap. V, Theorem 3.1] carry over to the directed
subdifferential. In [20] these conditions are formulated in the DC case with
the help of geometric differences of Moreau-Rockafellar subdifferentials.

The next two propositions generalize [5, Proposition 5.1 and 5.4] to QD
functions.
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Proposition 4.3. Let f : Rn → R be QD. If f has a local minimum in x,

then 0 ∈ Pn(
−→
∂ f(x)),

−→
0 n ≤

−→
∂ f(x).

If f has a local maximum in x, then 0 ∈ Nn(
−→
∂ f(x)),

−→
0 n ≤ −

−→
∂ f(x).

If 0 /∈ Pn(
−→
∂ f(x)) ∪Nn(

−→
∂ f(x)), then f has a strict saddle-point in x.

Proof. In the above mentioned citations, the necessary conditions for a
local minimum of QD functions are stated as

	∂f(x) ⊂ ∂f(x) . (29)

By the definition of the geometric difference this is equivalent to

0 ∈ ∂f(x)−* (	∂f(x))

which coincides with the positive part of
−→
∂ f(x), see (10). Observe that (29)

also yields
−→
0 n ⊂

−→
∂ f(x).

The necessary condition for the local maximum follows immediately by ap-
plying the necessary optimality condition to −f . The main reasons are

−→
∂ (−f)(x) = −

−→
∂ f(x)

and (15).
Taking into account Proposition 4.2 and the definition of the positive/nega-
tive visualization part, we can find two different directions l, η ∈ Sn−1 such
that f ′(x; l) > 0 and f ′(x; η) < 0. Hence, x is a strict saddle-point by
Propositon 4.2. �

We now state sufficient optimality conditions for the directed subdiffer-
ential (see [16], [19, Secs. V.1 and V.3] and [20]).

Proposition 4.4. Let f : Rn → R be QD and locally Lipschitz.

If 0 ∈ intPn(
−→
∂ f(x)), then f has a local minimum in x.

If 0 ∈ intNn(
−→
∂ f(x)), then f has a local minimum in x.

Proof. The proof starts from the well-known sufficient optimality condition

	∂f(x) ⊂ int ∂f(x) .

Having the equality int(A−* B) = (intA)−* B in mind for sets A,B ∈ C(Rn),
we could argue as in the proof of Proposition 4.3. �
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5. Connections to other subifferentials

To compare the directed subdifferential with some well-known subdiffer-
entials, we first recall a few definitions. We cannot mention everything, but
try to be as concise as possible, and discuss the most relevant constructions.

The classical (Moreau-Rockafellar) subdifferential of a convex function
f : Rn → R at x ∈ Rn is:

∂f(x) := {s ∈ Rn | ∀y ∈ Rn : 〈s, y − x〉+ f(x) ≤ f(y)}. (30)

The vector s ∈ ∂f(x) is called (convex) subgradient of f at x. This subdif-
ferential is a convex, compact and nonempty set for convex f : Rn → R (see
e.g. [35]), and its support function is the directional derivative

∂f(x) = {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′(x; l)}, (31)

where the directional derivative of f at x in direction l is defined as

f ′(x; l) := lim
t↓0

f(x+ tl)− f(x)

t
. (32)

The class of ‘simple’ subdifferentials (according to the classification of
[27]) that generalize this notion to non-convex functions are the ones that
correspond to the Moreau-Rockafellar subdifferential of the convexification
of a certain first-order approximation to the graph of the function. There is
some confusion in the notation of ‘simple’ subdifferentials; different names
are used for the same construction.

One of the most popular of such ‘simple’ subdifferentials is the Fréchet
subdifferential

∂Ff(x) =

{
v | lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0

}
.

One can think of the Fréchet subdifferential (see [33, 25, 27]) as of a support
set to the subderivative or lower Hadamard directional derivative

f ↓H(x; l) = lim inf
t↓0
η→l

f(x+ tη)− f(x)

t
, (33)

i.e.
∂Ff(x) = {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ↓H(x; l)}. (34)
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The Fréchet subdifferential is always defined for f : Rn → R, but is often
empty. In some studies the function is assumed to be Hadamard directionally
differentiable, i.e.

f ′H(x; l) = lim
t↓0
η→l

f(x+ tη)− f(x)

t
(35)

exists and is finite in all directions. Then f ↓H(x, l) = f ′H(x; l) (see [17]), and
(34) can be equivalently written via the Hadamard directional derivative.
This construction is also called Dini and Dini-Hadamard subdifferential and
is investigated e.g. in [8, 32, 33, 24, 21, 27] and in [19, Section III.4] (under the
name “Penot subdifferential”). We stick to the name Fréchet subdifferential
to denote this construction.

One can define a weaker notion of subdifferential via the weaker Dini
(lower) directional derivative (when η ≡ l in the corresponding limits (33)
and (35)). Such subdifferential is called Gâteaux or radial subdifferential,
and for a Dini directionally differentiable function f : Rn → R, it can be
expressed as

∂Df(x) := {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′(x; l)}. (36)

In this paper we always call this subdifferential Dini subdifferential, since for
a locally Lipschitz, directionally differentiable function the Dini directional
differentiability implies the (generally stronger) Hadamard directional differ-
entiability, and in this case all mentioned ‘simple’ subdifferentials coincide
(see [1, Sec. 6.1, Proposition 2] for a proof and [19, Chap. III.1, Subsec. 3]).
Observe that one can also define a symmetric “upper” construction: for
f : Rn → R directionally differentiable at x ∈ R we let

∂≥Df(x) = 	∂D(−f)(x) = {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≥ f ′(x; l)}.

These subdifferentials are identical to the convex one for convex functions,
but for a non-convex function f the directional derivative is not necessarily
sublinear. However, the support function of ∂Df(x) is the convex hull, i.e. the
bi-conjugate of the directional derivative in l, see [26, Chap. III, §3.5, Propo-
sition 2].

If f : Rn → R is a DC function with f = g− h, it is observed in [21], [19,
Chap. III, Proposition 4.1], that the Dini subdifferential equals the geometric
difference of the two Moreau-Rockafellar subdifferentials, i.e.

∂Df(x) = ∂g(x)−* ∂h(x). (37)
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The Dini subdifferential may be empty, since the geometric difference may
be empty (cf. [21, Section 2.1]), otherwise it is compact and convex.

The Michel-Penot subdifferential [28, 15] is determined by the so-called
Michel-Penot directional derivative of a function f : Rn → R in a direction
l ∈ Rn at x,

f ′MP (x; l) := sup
η∈Rn

lim sup
t↓0

f(x+ t(l + η))− f(x+ tl)

t
.

The Michel-Penot subdifferential of f at x is

∂MPf(x) := {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′MP (x; l)}. (38)

The Michel-Penot subdifferential is always nonempty, convex and compact.
The following connection between the Michel-Penot subdifferential and the
Demyanov difference follows from [15, Theorem 6.1] for any DC function
f = g − h:

∂MPf(x) = ∂g(x)−· ∂h(x). (39)

The Clarke’s subdifferential (cf. [9, 10, 11, 12]) of a locally Lipschitz
(generally non-convex) function, is also a convex set. For f : Rn → R and
l, x ∈ Rn, the Clarke directional derivative of f at x in direction l is the limit:

f ′Cl(x; l) := lim sup
t↓0
y→x

f(y + tl)− f(y)

t
.

The Clarke subdifferential is defined as

∂Clf(x) := {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′Cl(x; l)}. (40)

It is well-known, cf. e.g., [13, 15], that

∂Df(x) ⊆ ∂MPf(x) ⊆ ∂Clf(x),

and they are equal in the case of a convex function f . These inclusions may
be strict as it is shown e.g. in the examples in [5]. Another indication for
this inclusion is that the geometric difference is a subset of the Demyanov’s
difference together with the representations (37) and (39).

One of the most famous non-convex subdifferentials is the basic (lower)
subdifferential of Mordukhovich, [29], [30, Definition 1.77], ∂Mf(x), which
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is equivalent to the approximate subdifferential of Ioffe in finite dimensions
[22, 23], [30, Theorem 3.59] and may be defined as

∂Mf(x) = Lim sup
x′→x

∂Ff(x′), (41)

i.e. it consists of all possible limits of Fréchet subdifferentials of points around
x. As with the Dini subdifferential, it is possible to define the related upper
construction

∂≥Mf(x) = 	∂M(−f)(x),

and the symmetric Mordukhovich subdifferential

∂0
Mf(x) = ∂Mf(x) ∪ ∂≥Mf(x).

It is well-known that for a locally Lipschitz function the Mordukhovich
subdifferential is a compact in Rn and the Clarke subdifferential is its (closed)
convex hull (see e.g., [23], [30, Theorem 3.57]).

Finally, the quasidifferential of Demyanov-Rubinov [18], [19, Chapter III,
Section 2] of QD functions discussed in the previous sections is defined as an
element of a linear normed space of equivalence classes generated by pairs of
convex sets, following the approach of R̊adström [34]. Quasidifferentials were
later generalized to exhausters by Demyanov (see, e.g. [14], [17]). These tools
are different from other subdifferentials, as they are represented by several
sets, not one.

5.1. Relations between the directed subdifferential and other subdifferentials

There are a few useful relations (some in the form of equalities) between
the directed subdifferential and other non-convex subdifferentials. The ap-
parent reason to express other generalized constructions via the directed
subdifferential is the presence of exact calculus rules for the directed subdif-
ferential and calculus rules involving only inclusions for most other subdif-
ferentials.

In [19, Chap. III, Proposition 4.1] and [15, Theorem 6.1] formulas for QD
functions are given for the two subdifferentials of Dini and Michel-Penot:

∂Df(x) = ∂f(x)−* (	∂f(x)) , (42)

∂MPf(x) = ∂f(x)−· (	∂f(x)) . (43)
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The positive and negative part as well as the convexified visualization
of the directed subdifferential form the Dini subdifferential/superdifferential
resp. the Michel-Penot subdifferential.

We now extend the class in [5, Theorem 4.3] from DC to QD functions.

Proposition 5.1. Let f : Rn → R be a QD function and x ∈ Rn.
Then,

Pn(
−→
∂ f(x)) = ∂Df(x) ,

Nn(
−→
∂ f(x)) = ∂≥Df(x) .

If f is additionally locally Lipschitz, then

co(∂Rf(x)) = ∂MPf(x) .

For locally Lipschitz QD functions, we have the following inclusions for sub-
differentials:

∂Df(x) ∪ ∂≥Df(x) ⊂ ∂Rf(x) ⊂ ∂MPf(x) ⊂ ∂Clf(x)

Proof. The proof follows directly from (42)–(43) and (12)–(14). �

For QD functions, the directed subdifferential of the directional derivative
equals the one of the function (see [7, Proposition 3.15]). There is also a
close connection between the Mordukhovich subdifferential and the directed
subdifferential for DC functions with two arguments (see [7, Theorem 3.17]).
In the next two propositions both results are now extended for QD functions.

Proposition 5.2. Let f : Rn → R be a QD function and x ∈ Rn.
Then,

−→
∂ f(x) =

−→
∂ [f ′(x; ·)](0) .

Proof. It is not difficult to observe that if f is directionally differentiable,
for the positively homogeneous function h(·) = f ′(x; ·) we have

h′(0; l) = h(l) = f ′(x; l) .

Furthermore, h is QD by [6, Lemma 3.4] and by the definition of a QD
function, Dh(0) = Df(x). The assertion follows by the definition (20). �
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The next result is only valid in R2 until now, but it shows that the Rubi-
nov subdifferential (visualization of the directed one) coincides with the basic
symmetric subdifferential of Mordukhovich. In addition, the basic subdiffer-
ential and the superdifferential can be recovered via parts of the visualization.

Proposition 5.3. Let f : R2 → R be a QD function and x ∈ R2.

The following equality holds with
−→
∂ f(x) = (

−→
D1(l;x), d2(l;x))l∈S1:

∂M [f ′(x; ·)](0) = P2(
−→
∂ f(x)) ∪

⋃
l∈S1

Q
l,d2(·;x)
2

(
P1(
−→
D1(l;x)) ∪ bdN1(

−→
D1(l;x))

)
,

∂≥M [f ′(x; ·)](0) = N2(
−→
∂ f(x)) ∪

⋃
l∈S1

Q
l,d2(·;x)
2

(
N1(
−→
D1(l;x)) ∪ bdP1(

−→
D1(l;x))

)
,

∂0
M [f ′(x; ·)](0) = V2(

−→
∂ f(x)) = ∂Rf(x)

Proof. The directional derivative of QD functions is DC (and even QD
by [6, Lemma 3.4]). Hence, [7, Theorems 3.13 and 3.14] show the equali-
ties with the Mordukhovich subdifferentials and Proposition 5.2 shows the
equality to the directed subdifferential of the function itself.

∂0
M [f ′(x; ·)](0) = V2(

−→
∂ [f ′(x; ·)](0)) = V2(

−→
∂ f(x)),

∂M [f ′(x; ·)](0) = P2(
−→
∂ f(x)) ∪

⋃
l∈S1

Q
l,d2(·;x)
2

(
P1(
−→
D1(l;x)) ∪ bdN1(

−→
D1(l;x))

)
,

∂≥M [f ′(x; ·)](0) = N2(
−→
∂ f(x)) ∪

⋃
l∈S1

Q
l,d2(·;x)
2

(
N1(
−→
D1(l;x)) ∪ bdP1(

−→
D1(l;x))

)
.

�

5.2. Ioffe’s axioms

In [25, Chap. 2, Sec. 1.5], the following list of axioms for subdifferentials
for Lipschitz functions is exposed.

(SD1) ∂f(x) = ∅, if x /∈ dom(f).

(SD2) ∂f(x) = ∂g(x), if f and g coincide in a neighborhood of x
or as Rockafellar proposed:
∂f(x) = ∂g(x), if there exists a neighborhood U of (x, f(x)) with U ∩
epi f = U ∩ epi g.
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(SD3) If f is convex, then ∂f(x) coincides with the classical convex subdiffer-
ential.

(SD4) If f satisfies the Lipschitz condition with constant L in a neighborhood
of x, then ‖s‖ ≤ L for all s ∈ ∂f(x).

(SD5) If x is a local minimizer of f , then 0 ∈ ∂f(x).

(SD6) If n = n1 + n2 and x(i) ∈ Rni , i = 1, 2, with x = (x(1), x(2)) ∈ Rn and
f(x) = f1(x

(1)) + f2(x
(2)), then

∂f(x) ⊂ ∂f1(x
(1))× ∂f2(x

(2)). (44)

(SD7) If λ > 0, b ∈ Rm, A is a bounded linear operator from Rn onto Rm and
g(x) = λ ·f(Ax+ b), then ∂g(x) = λ ·A>∂f(Ax+ b), where A> denotes
the transposed matrix.

(SD8) If χS denotes the indicator function of S ⊂ Rn, i.e.

χS(x) =

{
0 if x ∈ S,
∞ otherwise,

then

∂f(x) =
{
s ∈ Rn : (s,−1) ∈ ∂χepi f (x, f(x))

}
. (45)

Ioffe argues that these properties are often used for further proofs and con-
structions, not the definition of a subdifferential itself. Moreover, he suggests
to define a subdifferential via these axioms, i.e. any mapping f(x) 7→ ∂f(x)
satisfying the properties (SD1)-(SD8) is called a subdifferential. No matter
whether one agrees with such definition or not, the properties suggested by
Ioffe are undoubtedly of fundamental importance in Nonsmooth Optimiza-
tion.

All the subdifferentials mentioned in the previous section (except for the
multi-set quasidifferentials and exhausters) satisfy all the above axioms. In
addition, the Moreau-Rockafellar subdifferential fulfills the following stronger
form of (SD6) for convex functions g, h : Rn → R and x ∈ Rn, sometimes
called Moreau–Rockafellar theorem or the Sum Rule (cf. [35, Theorem 23.8]):

(SR) ∂(g + h)(x) = ∂g(x) + ∂h(x).
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This strong equality is not fulfilled for the other known subdifferentials
of non-convex functions introduced above without additional regularity as-
sumptions. It is curious though that for some subdifferentials an inclusion
holds instead of the sum rule. For example, Fréchet subdifferential satisfies

∂F (g + h)(x) ⊇ ∂Fg(x) + ∂Fh(x),

(see e.g. [27, Proposition 1.12]) but for the other subdifferentials (of Michel-
Penot, Clarke, Mordukhovich) the inclusion is the opposite (see [28, remarks
after Proposition 1.4], [12, Proposition 2.3.3] resp. [30, Theorem 3.36]):

∂MP (g + h)(x) ⊆ ∂MP g(x) + ∂MPh(x) ,

∂Cl(g + h)(x) ⊆ ∂Cl g(x) + ∂Clh(x) ,

∂M(g + h)(x) ⊆ ∂M g(x) + ∂Mh(x)

We show that the directed subdifferential satisfies axioms (SD2)-(SD7)
and even their stronger versions. In our setting for QD functions defined
with finite values on the whole Rn, (SD1) and (SD8) are not relevant.

Observe that most axioms discussed in the next proposition hold in a
stronger form than required by Ioffe’s axioms. We highlight this in the state-
ment (see [5, Proposition 4.2] for DC functions).

Proposition 5.4. Let f : Rn → R be a QD function and x ∈ Rn. Then, the
directed subdifferential of f at x fulfills:

(SD′2) If f̃ is a QD function that coincides with f in an open neighbourhood

U of x, then
−→
∂ f(x) =

−→
∂ f̃(x). Moreover, this property holds under a

weaker condition: it is enough to require that the values of f and f̃ and
their directional derivatives coincide at x.

(SD′3) If f is convex, then ∂Rf(x) coincides with the classical convex subdif-

ferential ∂f(x), and
−→
∂ f(x) = Jn (∂f(x)).

(SD′4) If f is locally Lipschitz in an open neighborhood U of x with constant
Lf ≥ 0, then

‖s‖2 ≤ Lf for all s ∈ ∂Rf(x) ,

‖
−→
∂ f(x)‖ ≤ Lf .
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(SD′5) If x is a local minimizer of f , then
−→
0 n ≤

−→
∂ f(x) and 0 ∈ ∂Rf(x).

Moreover, we can distinguish between minima, maxima and saddle-
points:

(i) If f has a local minimum in x, then
−→
0 n ≤

−→
∂ f(x); 0 ∈ Pn(

−→
∂ f(x)).

(ii) If f has a local maximum in x, then
−→
0 n ≤ −

−→
∂ f(x); 0 ∈ Nn(

−→
∂ f(x)).

(iii) If 0 /∈ Pn(
−→
∂ f(x)) ∪Nn(

−→
∂ f(x)), then f has a strict saddle-point

in x.

(SD′6) If n = n1 + n2 and x(i) ∈ Rni, i = 1, 2, with x = (x(1), x(2)) ∈ Rn and
f(x) = f1(x

(1)) + f2(x
(2)), then we have the equality

−→
∂ f(x) =

−→
∂ f1(x

(1))×
−→
∂ f2(x

(2)). (46)

(SD′7) If λ > 0, b ∈ Rm are given, A is a bounded linear operator from Rn

onto Rm and g(x) = λ · f(Ax + b), then
−→
∂ g(x) = λ · A>

−→
∂ f(Ax + b),

where A> denotes the transposed matrix.

(SR′) Moreover, for two quasidifferentiable functions f1, f2 : Rn → R the
exact sum rule holds:

−→
∂ f(x) =

−→
∂ f1(x) +

−→
∂ f2(x).

Proof. The property (SD′2) follows from the definition. Indeed, if the func-

tion f̃ coincides locally around x with f , then the corresponding directional
derivatives are the same. When directional derivatives are the same, quasi-
differentials coincide, and so do the directed subdifferentials.

The property (SD′3) follows from the observation that for a convex func-
tion f : Rn → R we have Df(x) = [∂f(x), ∂f(x)] with ∂f(x) = ∂f(x),
∂f(x) = 0n, and hence by Remark 2.5

−→
∂ f(x) = Jn(∂f(x))− Jn({0n}) = Jn(∂f(x))−−→0 n = Jn(∂f(x)).

From (10) we know that in the convex case the visualization (i.e. the Rubinov
subdifferential) coincides with the positive part of the directed set, namely
with the Moreau-Rockafellar subdifferential.
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(SD′4): Applying (43) and Proposition 5.1 we know that

∂MPf(x) = ∂f(x)−· (	∂f(x)) ,

∂MPf(x) ⊂ ∂Clf(x) .

We apply [3, Proposition 4.11] to estimate the norm of directed sets by
the Demyanov metric which is expressed with the help of the Demyanov
difference (see [6, (2)]). With these tools we are ready to estimate the directed
subdifferential:

‖
−→
∂ f(x)‖ = ‖Jn (∂f(x))− Jn

(
	∂f(x)

)
‖ ≤ ∂D(∂f(x),	∂f(x))

= ‖∂f(x)−· (	∂f(x))‖ = ‖∂MPf(x)‖ ≤ ‖∂Clf(x)‖

Since the property (SD4) holds for Clarke’s subdifferential (see [12, Proposi-
tions 2.1.1 and 2.1.2]), the proof is finished.
The same estimate holds for the Rubinov subdifferential by (12)–(14), since

‖∂Rf(x)‖ = ‖Vn(
−→
∂ f(x))‖ ≤ ‖ coVn(

−→
∂ f(x))‖

≤ ‖∂f(x)−· (	∂f(x))‖ .

Property (SD′5) is shown in Proposition 4.3, the proof of (SD′6) follows from
Theorem 3.2 and Proposition 3.11, finally, (SD′7) is shown in Lemma 3.10.
�

6. Conclusions

This two-part work serves to extend the notion of the directed subdif-
ferential to a class of QD functions more general than DC. The directed
subdifferential has the same exact calculus rules as the quasidifferential and
all relevant axioms from Ioffe’s list are fulfilled, while the non-uniqueness and
the “inflation in size” in the representation of the quasidifferential is avoided.
However, this exciting subject is far from being exhausted. It seems plausible
that the directed subdifferential can be expressed via directional derivatives
alone without using any DC representation. We are also curious about the
perspective of studying essentially non-Lipschitz functions, e.g. the ones tak-
ing infinite values, as this would allow us to incorporate the first and eighth
of Ioffe’s axioms into the theory.
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lipschitziennes et non lipschitziennes. C. R. Acad. Sci. Paris Sér. I
Math., 298(12):269–272, 1984.

[29] B. S. Mordukhovich. Maximum principle in the problem of time optimal
response with nonsmooth constraints. J. Appl. Math. Mech., 40(6):960–
969, 1976.

[30] B. S. Mordukhovich. Variational Analysis and Generalized Differentia-
tion. I Basic Theory, volume 330 of Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 2006.
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