URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5628-4
Titelangaben
Pannek, Jürgen ; Worthmann, Karl:
Reducing the Prediction Horizon in NMPC : An Algorithm Based Approach.
Bayreuth
,
2011
Volltext
|
|||||||||
Download (288kB)
|
Abstract
In order to guarantee stability, known results for MPC without additional terminal costs or endpoint constraints often require rather large prediction horizons. Still, stable behavior of closed loop solutions can often be observed even for shorter horizons. Here, we make use of the recent observation that stability can be guaranteed for smaller prediction horizons via Lyapunov arguments if more than only the first control is implemented. Since such a procedure may be harmful in terms of robustness, we derive conditions which allow to increase the rate at which state measurements are used for feedback while maintaining stability and desired performance specifications. Our main contribution consists in developing two algorithms based on the deduced conditions and a corresponding stability theorem which ensures asymptotic stability for the MPC closed loop for significantly shorter prediction horizons.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | erscheint in:
IFAC Proceedings Volumes. Bd. 44 (2011) Heft 1 . - S. 7969-7974 DOI: https://doi.org/10.3182/20110828-6-IT-1002.00916 |
Keywords: | model predictive control; stability; suboptimality estimate; algorithms; sampled
data system |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-5628-4 |
Eingestellt am: | 26 Mai 2021 13:20 |
Letzte Änderung: | 08 Jun 2021 07:45 |
URI: | https://epub.uni-bayreuth.de/id/eprint/5628 |