
Reducing the Prediction Horizon in
NMPC: An Algorithm Based Approach ?

J. Pannek ∗ K. Worthmann ∗∗

∗ Curtin University of Technology, Perth, 6845 WA, Australia
(e-mail: juergen.pannek@googlemail.com)

∗∗University of Bayreuth, 95440 Bayreuth, Germany
(e-mail: karl.worthmann@uni-bayreuth.de)

Abstract: In order to guarantee stability, known results for MPC without additional terminal
costs or endpoint constraints often require rather large prediction horizons. Still, stable behavior
of closed loop solutions can often be observed even for shorter horizons. Here, we make use
of the recent observation that stability can be guaranteed for smaller prediction horizons via
Lyapunov arguments if more than only the first control is implemented. Since such a procedure
may be harmful in terms of robustness, we derive conditions which allow to increase the rate
at which state measurements are used for feedback while maintaining stability and desired
performance specifications. Our main contribution consists in developing two algorithms based
on the deduced conditions and a corresponding stability theorem which ensures asymptotic
stability for the MPC closed loop for significantly shorter prediction horizons.

Keywords: model predictive control, stability, suboptimality estimate, algorithms, sampled
data system

1. INTRODUCTION

Model predictive control (MPC), sometimes also termed
receding horizon control (RHC), deals with the problem of
approximately solving an infinite horizon optimal control
problem which is, in general, computationally intractable.
To this end, a solution of the optimal control problem on
a truncated, and thus finite, horizon is computed. Then,
the first part of the resulting control is implemented at
the plant and the finite horizon is shifted forward in time
which renders this method to be iteratively applicable, see,
e.g., Magni et al. (2009).

During the last decade, theory of MPC has grown rather
mature for both linear and nonlinear systems as shown
in Allgöwer and Zheng (2000) and Rawlings and Mayne
(2009). Additionally, it is used in a variety of industrial
applications, cf. Badgwell and Qin (2003) due to its capa-
bility to directly incorporate input and state constraints.
However, since the original problem is replaced by an
iteratively solved sequence of control problems – which
are posed on a finite horizon – stability of the resulting
closed loop may be lost. In order to ensure stabilty, several
modifications of the finite horizon control problems such as
stabilizing terminal constraints or a local Lyapunov func-
tion as an additional terminal weight have been proposed,
cf. Keerthi and Gilbert (1988) and Chen and Allgöwer
(1999).

Here, we consider MPC without additional terminal con-
tstraints or costs, which is especially attractive from a
computational point of view. Stability for these schemes

? This work was supported by DFG Grant Gr1569/12 within the
Priority Research Program 1305 and the Leopoldina Fellowship
Programme LPDS 2009-36.

can be shown via a relaxed Lyapunov inequality, see Grüne
(2009) for a set valued framework and Grüne and Pannek
(2009) for a trajectory based approach. Still, stable behav-
ior of the MPC controlled closed loop can be observed in
many examples even if these theoretical results require a
longer prediction horizon in order to guarantee stability.
The aim of this paper consists of closing this gap between
theory and experimental experience. In particular, we de-
velop an algorithm which enables us to ensure stability for
a significantly shorter prediction horizon and, as a con-
sequence, reduces the computational effort in each MPC
iteration significantly. The key observation in order to ex-
tend the line of arguments in the stability proofs proposed
in Grüne (2009) is that the relaxed Lyapunov inequality
holds true for the MPC closed loop for smaller horizons if
not only the first element but several controls of the open
loop are implemented, cf. Grüne et al. (2010). However,
this may be harmful in terms of robustness, cf. Magni
and Scattolini (2007). Utilizing the internal structure of
consecutive MPC problems in the critical cases along the
closed loop trajectory, we present conditions which allow
us to close the loop more often and maintain stability.
Indeed, our results are also applicable in order to deduce
performance estimates of the MPC closed loop.

The paper is organized as follows: In Section 2, the MPC
problem under consideration is stated. In the ensuing sec-
tion, we extend suboptimality results from Grüne and Pan-
nek (2009) and Grüne et al. (2010) in order to give a basic
MPC algorithm which checks these performance bounds.
In Section 4, we develop the proposed algorithm further
in order to increase the rate at which state measurements
are used for feedback and state our main stability theorem.
In the final Section 5 we draw some conclusions. Instead



of a separated example, we use a numerical experiment
throughout the paper which shows the differences and
improvements of the presented result in comparison to
known results.

2. PROBLEM FORMULATION

We consider nonlinear discrete time control systems

x(n+ 1) = f(x(n), u(n)), x(0) = x0 (1)

with x(n) ∈ X ⊂ X and u(n) ∈ U ⊂ U for n ∈ N0

where N0 denotes the natural numbers including zero. The
state space X and the control value space U are arbitrary
metric spaces. As a consequence, the following results are
applicable to discrete time dynamics induced by a sampled
– finite or infinite dimensional – system, see, e.g., Altmüller
et al. (2010) or Ito and Kunisch (2002). Constraints may be
incorporated by choosing the sets X and U appropriately.
Furthermore, we denote the space of control sequences
u : N0 → U by UN0 .
Our goal consists of finding a static state feedback u =
µ(x) ∈ U which stabilizes a given control system of type
(1) at its unique equilibrium x∗. In order to evaluate the
quality of the obtained control sequence, we define the
infinite horizon cost functional

J∞(x0, u) =

∞∑
n=0

`(x(n), u(n)) (2)

with continuous stage cost ` : X×U→ R+
0 with `(x∗, 0) =

0 and `(x, u) > 0 for x 6= x∗. Here, R+
0 denotes the

nonnegative real numbers. The optimal value function is
given by V∞(x0) = infu∈UN0 J∞(x0, u) and, for the sake of
convenience, it is assumed that the infimum with respect
to u ∈ UN0 is attained. Based on the optimal value function
V∞(·), an optimal feedback law on the infinite horizon can
be defined as

µ∞(x(n)) := argmin
u∈U

{V∞(x(n+ 1)) + `(x(n), u)} (3)

using Bellman’s principle of optimality. However, since the
computation of the desired control law (3) requires, in gen-
eral, the solution of a Hamilton–Jacobi–Bellman equation,
which is very hard to solve, we use a model predictive
control (MPC) approach instead. The fundamental idea of
MPC consists of three steps which are repeated at every
discrete time instant:

• Firstly, an optimal control (u?0, u
?
1, . . . , u

?
N−1) ∈ UN

for the problem on a finite horizon [0, N), i.e.,

JN (x0, u) =

N−1∑
k=0

`(xu(k;x0), u(k)) (4)

is computed given the most recent known state x0
of the system (1). Here, xu(·;x0) corresponds to the
open loop trajectory of the prediction with control u
and initial state x0.

• Secondly, the first element µN (x0) = u?0 of the
obtained sequence of open loop control values is
implemented at the plant.

• Thirdly, the entire optimal control problem consid-
ered in the first step is shifted forward in time by
one discrete time instant which allows for an iterative
application of this procedure.

The corresponding closed loop costs are given by

J∞(x0, µN ) =

∞∑
n=0

`(xµN
(n), µN (xµN

(n)))

where xµN
(·) denotes the closed loop solution. We use

uN (·;x0) = argmin
u∈UN

JN (x0, u) (5)

to abbreviate the minimizing open loop control sequence
and VN (x0) = minu∈UN JN (x0, u) for the corresponding
optimal value function. Furthermore, we say that a con-
tinuous function ρ : R≥0 → R≥0 is of class K∞ if it
satisfies ρ(0) = 0, is strictly increasing and unbounded,
and a continuous function β : R≥0×R≥0 → R≥0 is of class
KL if it is strictly decreasing in its second argument with
limt→∞ β(r, t) = 0 for each r > 0 and satisfies β(·, t) ∈ K∞
for each t ≥ 0.

Note that, different to the infinite horizon problem (2),
the first step of the MPC problem consists of minimizing
the truncated cost functional (4) over a finite horizon.
While commonly endpoint constraints or a Lyapunov
function type endpoint weight are used to ensure stability
of the closed loop, see, e.g., Keerthi and Gilbert (1988),
Chen and Allgöwer (1999), Jadbabaie and Hauser (2005)
and Graichen and Kugi (2010), we consider the plain
MPC version without these modifications. According to
Grüne and Pannek (2009), stable behavior of the closed
loop trajectory can be guaranteed using relaxed dynamic
programming.

Proposition 2.1. (i) Consider the feedback law µN : X →
U and the closed loop trajectory xµN

(·) with initial value
x(0) = x0 ∈ X. If

VN (xµN
(n)) ≥ VN (xµN

(n+ 1)) + α`(xµN
(n), µN (x(n)))

(6)

holds for some α ∈ (0, 1] and all n ∈ N0, then

αV∞(x0) ≤ αJ∞(x0, µN ) ≤ VN (x0) ≤ V∞(x0) (7)

holds.
(ii) If, in addition, there exist α1, α2, α3 ∈ K∞ such that
α1(‖x‖) ≤ VN (x) ≤ α2(‖x‖) and `(x, u) ≥ α3(‖x‖) hold
for all x = xµN

(n) ∈ X, n ∈ N0, then there exists β ∈ KL
which only depends on α1, α2, α3 and α such that the
inequality ‖xµN

(n)‖ ≤ β(‖x0‖, n) holds for all n ∈ N0,
i.e., xµN

(·) behaves like a trajectory of an asymptotically
stable system.

The key assumption in Proposition 2.1 is the relaxed
Lyapunov–inequality (6) in which α can be interpreted
as a lower bound for the rate of convergence. From the
literature, it is well–known that this condition is satisfied
for sufficiently long horizons N , cf. Jadbabaie and Hauser
(2005), Grimm et al. (2005) or Alamir and Bornard (1995),
and that a suitable N may be computed via methods
described in Pannek (2009). To investigate whether this
condition is restrictive, we consider the following example.

Example 2.2. Consider the synchronous generator model

ẋ1(t) = x2(t)

ẋ2(t) = −b1x3(t) sinx1(t)− b2x2(t) + P

ẋ3(t) = b3 cosx1(t)− b4x3(t) + E + u(t)

with parameters b1 = 34.29, b2 = 0.0, b3 = 0.149,
b4 = 0.3341, P = 28.22, and E = 0.2405 from Galaz et al.
(2003) and the initial value x0 = (1.02, 0.1, 1.014).



For Example 2.2 our aim is to steer the system to its
equilibrium x∗ ≈ (1.12, 0.0, 0.914). To this end, we use
MPC to generate results for sampling time T = 0.1 and
running cost

`(x, u) =

∫ T

0

‖ϕ(t;x, ũ)− x∗‖2 + λ‖ũ(t)‖2 dt

with piecewise constant control ũ(t) = u for t ∈ [0, T ) and
λ = 10−6 where ϕ(·;x, ũ) denotes the solution operator of
the differential equation with initial value x and control ũ.
For this setting, we obtain stability of the closed loop via
inequality (6) for N ≥ 30, cf. Figure 1. However, Figure
1 shows stable behavior of the closed loop for the smaller
prediction horizon N = 19 without significant deviations
– despite the fact that the relaxed Lyapunov–inequality
from Proposition 2.1 is violated at three instances. Our

1.02 1.04 1.06 1.08 1.1 1.12
0

0.05

0.1

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

x
2

x
1

x 3

1.118 1.119 1.12 1.121 1.122 −1

0

1

x 10
−3

0.91

0.915

0.92

0.925

0.93

x
2

x
1

x 3

Fig. 1. Comparison of closed loop solutions for N = 30
(solid) and N = 19 (dashed) where (�) marks a
violation of the suboptimality bound α = 0.1

numerical experiment shows that, even if stability and the
desired performance estimate (7) cannot be guaranteed
via Proposition 2.1, stable and satisfactory behavior of the
closed loop may still be observed. Hence, since the compu-
tational effort grows rapidly with respect to the prediction
horizon, our goal consists of developing an algorithm which
allows for significantly reducing the prediction horizon. To
this end, we adapt the thereotical condition given in (6).
Moreover, the proposed algorithms check – at runtime –
whether these conditions are satisfied or not.

Note that, since we do not impose additional stabilizing
terminal constraints, feasibility of the NMPC scheme is an
issue that cannot be neglected. In particular, without these
stabilizing constraints the closed loop trajectory might run
into a dead end. To exclude such a scenario, we assume the
following viability condition to hold.

Assumption 2.3. For each x ∈ X there exists a control
u ∈ U such that f(x, u) ∈ X holds.

3. THEORETICAL BACKGROUND

In Section 2 we observed a mismatch between the relaxed
Lyapunov inequality (6) and the results from Example
2.2 which indicates that the closed loop exhibits a stable
and – in terms of performance – satisfactory behavior
for significantly smaller prediction horizons N . In Grüne

et al. (2010) it has been shown that the suboptimality
estimate α is increasing (up to a certain point) if more
than one element of the computed sequence of control
values is applied. Hence, we vary the number of open
loop control values to be implemented during runtime at
each MPC iteration, i.e., the system may stay in open
loop for more than one sampling period, in order to deal
with this issue. Doing so, however, may lead to severe
problems, e.g., in terms of robustness, cf. Magni and
Scattolini (2007). Hence, the central aim of this work is the
development of an algorithm which checks – at runtime –
whether it is necessary to remain in open loop in order to
guarantee the desired stability behavior of the closed loop
by suboptimality arguments, or if the loop can be closed
without loosing these characteristics.

To this end, we introduce the list S = (s(0), s(1), . . .) ⊆
N0, which we assume to be in ascending order, in order
to indicate time instances at which the control sequence
is updated. Moreover, we denote the closed loop solution
at time instant s(n) by xn = xµN

(s(n)) and define mn :=
s(n+ 1)− s(n), i.e., the time between two MPC updates.
Hence,

xµN
(s(n) +mn) = xµN

(s(n+ 1)) = xn+1

holds. This enables us – in view of Bellman’s principle of
optimality – to define the closed loop control

µSN (·;xn) := argmin
u∈Umn

{
VN−mn(xu(mn;xn)) (8)

+

mn−1∑
k=0

`(xu(k;xn), u(k))
}
.

In Grüne et al. (2010), a suboptimality degree αN,mn

relative to the horizon lengthN and the number of controls
to be implemented mn has been introduced in order to
measure the tradeoff between the infinite horizon cost
induced by the MPC feedback law µSN (·; ·), i.e.

V
µS
N∞ (x0) :=

∞∑
n=0

mn−1∑
k=0

`
(
xµS

N
(k;xn), µSN (k;xn)

)
, (9)

and the infinite horizon optimal value function V∞(·). In
particular, it has been shown that given a controllability
condition, i.e., for each x0 there exists a control ux0 such
that

`(xux0
(n;x0), ux0

(n;x0)) ≤ Cσn min
u∈U

`(x0, u) (10)

holds with C ≥ 1, σ ∈ (0, 1), then there exists a prediction
horizon N ∈ N≥2 and m ∈ {1, . . . , bN/2c} such that
αN,m ≥ α for an arbitrarily specified α ∈ (0, 1).

Example 3.1. Suppose (10) to hold with C = 4 and σ =
0.6 and fix α = 0.275. Then the pair (N,m) = (15, 6)
implies αN,m ≈ 0.294 > α, cf. Figure 2, i.e., the closed–
loop satisfies the performance bound α. However, N = 25
is the smallest prediction horizon which yields αN,m ≥ α
for m = 1, i.e., classical MPC, cf. Figure 3.

Examples 3.1 shows that choosing a larger value for m
may significantly reduce the required prediction horizon
length and, consequently, the numerical effort which grows
rapidly with respect to the horizon N .

Since the shape of the curve in Figure 2 is not a coinci-
dence, i.e., αN,bN/2c ≥ αN,m holds for m ∈ {1, . . . , N −1},
cf. Grüne et al. (2010), we may easily determine the small-



Fig. 2. Visualization of the α15,·-values with respect to
the number of controls to be implemented m =
1, . . . , bN/2c} for prediction horizon N = 15. The
dashed line indicates the reference value α = 0.275.

est prediction horizon N ∈ N≥2 such that αN,bN/2c ≥ α
ensures the desired performance specification. However,

Fig. 3. Illustration of the α·,1-values with respect to the
prediction horizon N ∈ {15, . . . , 25} for m = 1, i.e.,
classical MPC. The dashed line indicates the reference
value α = 0.275.

note that these results exhibit a set–valued nature. Hence,
the validity of the controllability condition (10) and the
use of a prediction horizon length corresponding to the
mentioned formula lead to an estimate which may be
conservative – at least in parts of the state space. This
motivates the development of algorithms which use the
above calculated horizon length but close the control loop
more often. Here, we make use of an extension of the m-
step suboptimality estimate derived in Grüne and Pannek
(2009) which is similar to Grüne et al. (2010) but can be
applied in a trajectory based setting.

Proposition 3.2. Consider α ∈ (0, 1] to be fixed. If there
exists a function VN : X→ R+

0 satisfying

VN (xn) ≥ VN (xn+1) + α

mn−1∑
k=0

`(xuN
(k;xn), uN (k;xn))

(11)

with mn ∈ {1, . . . , N − 1} for all n ∈ N0, then

V
µS
N∞ (x0) ≤ 1

α
· V∞(x0) (12)

holds for all n ∈ N0.

Proof: Reordering (11), we obtain

α

mn−1∑
k=0

`(xuN
(k;xn), uN (k;xn)) ≤ VN (xn)− VN (xn+1).

Summing over n ∈ N0 yields

α

n∑
i=0

mi−1∑
k=0

`(xuN
(k;xi), uN (k;xi))

≤ VN (x0)− VN (xn+1) ≤ VN (x0)

and hence taking n to infinity implies the assertion. 2

Remark 3.3. Note that the assumptions of Proposition 3.2
indeed imply the estimate

V∞(xn) ≤ V µ
S
N∞ (xn) ≤ 1

α
V∞(xn) (13)

for all n ∈ N0 which can be proven analogously.

Note that S is built up during runtime of the algorithm
and not known in advance. Hence, S is always ordered. A
corresponding implementation which aims at guaranteeing
a fixed lower bound of the degree of suboptimality α takes
the following form:

Given state x := x0, list S = (0), N ∈ N≥2, and α ∈ (0, 1)

(1) Set j = 0, compute uN (·;x) and VN (x). Do
(a) Set j = j + 1, compute VN (xuN

(j;x))
(b) Compute maximal α to satisfy (11)
(c) If α ≥ α: Set mn = j and goto 2
(d) If j = N − 1: Print warning “Solution may

diverge”, set mn = 1 and goto 2
while α < α

(2) For j = 1, . . . ,mn do
Implement µSN (j − 1;x) := uN (j − 1;x)

(3) Set S := (S,back(S) +mn), x := xµS
N

(mn;x), goto 1

Remark 3.4. Here, we adopted the programming notation
back which allows for fast access to the last element of a
list.

Remark 3.5. If (11) is not satisfied for j ≤ N − 1, a
warning will be printed out because the performance
bound α cannot be guaranteed. In order to cope with
this issue, there exist remedies, e.g., one may increase the
prediction horizon and repeat step 1. For sufficiently large
N , this ensures the local validity of (11). Unfortunately,
the proof of Proposition 3.2 cannot be applied in this
context due to the prolongation of the horizon. Yet, it
can be replaced by estimates from Pannek (2009) or
Giselsson (2010) for varying prediction horizons to obtain a
result similar to (12). Alternatively, one may continue with
the algorithm. If there does not occur another warning,
the algorithm guarantees the desired performance for xn
instead of x0, i.e., from that point on, cf. Remark 3.3.

In order to obtain a robust procedure, however, it is
preferable that the control loop is closed as often as
possible, i.e., mn = 1 for all n ∈ N0. In the following
section, we give results and corresponding algorithms
which – given certain conditions – allow us to reduce mn.

4. ALGORITHMS AND STABILITY RESULTS

In many applications a stable behavior of the closed loop is
observed for mn = 1 even if it cannot be guaranteed using
the suboptimality estimate (6), cf. Example 2.2. Here,
we present a methodology to close the control loop more
often while maintaining stability. In particular, if mn > 1
is required in order to ensure α ≥ α in (11) and, as a



consequence, in step (1) of the proposed algorithm, we
present conditions which allow us to update the control
for some j ∈ {1, . . . ,mn − 1} to

ûN (k;xn) :=

{
uN (k;xn), k ≤ j − 1

uN (k − j;xuN
(j;xn)), k ≥ j (14)

insert the new updating time instant s(n) + j into the
list S, and still be able to guarantee the desired stability
behavior of the closed loop. Summarizing, our aim consists
of guaranteeing that the degree of suboptimality α is
maintained, i.e., (11) is still satisfied, for the MPC law
updated at a time instant j ≤ mn − 1 according to (14).

Proposition 4.1. Let xn ∈ X be given and inequality (11)
hold for uN (·;xn), α > 0, and mn ∈ {2, . . . , N − 1}. If the
inequality

VN (xuN
(mn − j;xuN

(j;xn)))− VN−j(xuN
(j;xn))

≤ (1− α)

j−1∑
k=0

`(xuN
(k;xn), uN (k;xn)) (15)

− α
mn−1∑
k=j

`(xuN
(k − j;xuN

(j;xn)), uN (k − j;xuN
(j;xn)))

holds for some j ∈ {1, . . . ,mn − 1}, then the control
sequence uN (·;xn) can be replaced by (14) and subop-
timality degree α is locally maintained.

Proof: In order to show the assertion, we need to show
(11) for the modified control sequence (14). Reformulating
(15) by shifting the running costs associated with the
unchanged control to the left hand side of (15) we obtain

VN (xuN
(mn − j;xuN

(j;xn)))− VN (xuN
(0;xn))

≤ −α
mn−1∑
k=0

`(xûN
(k;xn), ûN (k;xn))

which is equivalent to

VN (xn)≥ VN (xûN
(mn;xn)) (16)

+α

mn−1∑
k=0

`(xûN
(k;xn), ûN (k;xn)),

i.e., the relaxed Lyapunov inequality (11) for the updated
control ûN (·;xn). 2

Example 4.2. Consider the illustrative Example 2.2 with
horizon N = 19 and α = 0.1. For this setting, we obtain
α ≥ α with mn = 1 for all updating instances sn ∈ S
except for those three points indicated by (�) in Figure 1
where we have mn = 2 once and mn = 3 twice. Yet, for
each of these points, inequality (15) holds with j = 1.

• mn = 2: We apply Theorem 4.1 in order to update the
control uN (·;xn) := ûN (·;x) according to (14). Thus,
since the MPC law was updated at each sampling
instant, we have obtained stability of the classical
MPC closed loop.
• mn = 3: We utilize Theorem 4.1 in an iterative

manner: since (15) holds for j = 1, we proceed as
in the case mn = 2, update the control uN (·;xn) :=
ûN (·;xn), and compute xµN

(2;xn). Then, we com-
pute uN (·;xµN

(2;xn)) and check whether or not (15)
holds for (14) with j = 2. Note that here, uN (·;xn)
in (14) is already an updated control sequence. Since

(15) holds true, we obtain stability of the closed loop
for the updated MPC control sequence. Moreover, we
applied µN (x(s(n)), µN (x(s(n)+1)) and µN (x(s(n)+
2)) instead of µSN (i;x(s(n))), i = 0, 1, 2, i.e., we have
again used classical MPC.

Note that this iterative procedure can be extended in a
similar manner for all mn ≤ N − 1.

Integrating the results from Theorem 4.1 into the algo-
rithm displayed after Proposition 3.2 can be done by
changing Step (2).

(2) For j = 1, . . . ,mn do
(a) Implement µSN (j − 1;x) := uN (j − 1;x)
(b) Compute uN (·;xuN

(j;x)) and VN (xûN
(mn;x))

(c) If j < mn and condition (15) holds:
Construct ûN (·;x) according to (14)
Update uN (·;x) := ûN (·;x)

Note that VN−j(xuN
(j;xn)) in (15) is known in advance

from VN (xn) due to the principle of optimality. Hence,
only uN (·;xuN

(j;xn)) and VN (xûn(mn;xn)) need to be
computed. Unfortunately, this result has to be checked for
all j ∈ {1, . . . ,mn−2} using the comparison basis VN (xn).
As a consequence, we always have to keep the updating
instant s(n) in mind, cf. Example 4.2. The following result
allows us to weaken this restriction:

Proposition 4.3. Let xn ∈ X be given and inequality (11)
hold for uN (·;xn), α > 0, and mn ∈ {2, . . . , N − 1}. If the
inequality

VN (xuN
(mn − j;xuN

(j;xn)))− VN (xuN
(mn;xn))

≤ α
mn−1∑
k=j

(
`(xuN

(k;xn), uN (k;xn)) (17)

− `(xuN
(k − j;xuN

(j;xn)), uN (k − j;xuN
(j;xn)))

)
holds for some j ∈ {1, . . . ,mn − 1}, then the control
sequence uN (·;xn) can be replaced by (14) and subop-
timality degree α is locally maintained.

Proof: Adding (17) to (11) leads to

VN (xûN
(mn;xn))− VN (xn)

≤ −α
j−1∑
k=0

`(xuN
(k;xn), uN (k;xn))

− α
mn−1∑
k=j

`(xûN
(k;xn), ûN (k;xn)).

Updating the control sequence according to (14), we obtain
(16) which completes the proof. 2

Remark 4.4. We also like to point out that conditions
(15) and (17) allow for a less fast decrease of energy
along the closed loop, i.e., the case VN (xûN

(mn;xn)) ≥
VN (xuN

(mn;xn)) is not excluded in general.

As outlined in Example 4.2, Theorem 4.1 (and analo-
gously Theorem 4.3) may be applied iteratively. Yet, in
contrast to (15), VN (xn) is not required in (17). Hence,
if an appropriate update can be found for time instant
j ∈ {1, . . . ,mn − 1}, the loop can be closed and, as
a consequence, Theorem 4.3 can be applied to the new
initial value xû(j;xn) with respect to the reduced number



of control to be implemented mn − j. To this end, the
following modification of Step (2c) can be used:

(2c) If j < mn and condition (17) holds:
Construct ûN (·;x) according to (14)
Update uN (·;x) := ûN (·;x)
Update the values VN (xuN

(mn;x)) and
`(xuN

(k;x), uN (k;x)), k = j, . . . ,mn − 1

Combining the results from Proposition 3.2 and Theorems
4.1, 4.3, we obtain our main stability result:

Theorem 4.5. Let x0 ∈ X, α > 0 be given and apply
one of the three proposed algorithms. Assume that (1c)
is satisfied for some j ∈ {1, . . . , N − 1} for each iterate.
Then the closed loop trajectory satisfies the performance
estimate (12) from Proposition 3.2. If, in addition, the
conditions of Proposition 2.1(ii) hold, then xµN

(·) behaves
like a trajectory of an asymptotically stable system.

Proof: The algorithms construct the set S. Since (1c) is
satisfied for some j ∈ {1, . . . , N − 1} the assumptions of
Proposition 3.2, i.e., inequality (11) for xn = xµN

(s(n)),
are satisfied which implies (12). To conclude asymptoti-
cally stable behavior of the closed loop, standard direct
Lyapunov techniques can be applied. 2

Example 4.6. Again consider Example 2.2 with N = 19
and α = 0.1. Since (17) is more conservative than (15),
the closed loop control and accordingly the closed loop
solution xµN

(·) will not coincide in general. This also holds
true in our example: While the case mn = 2 can be
resolved similarly using the algorithm based on (17), no
update of the control uN is performed for the two cases
mn = 3. Here, this does not cause any change in the list
S. However, in general, S is likely to be different for the
presented algorithms.

Since the proposed algorithms guarantee stability for the
significantly smaller horizon N = 19, the computing time
for Example 2.2 is reduced by almost 50% – despite the
additional computational effort for Step (2).

5. CONCLUSION

Based on a detailed analysis of a relaxed Lyapunov in-
equality, we have deduced conditions in order to close
the gap between theoretical stability results and stable
behavior of the MPC closed loop. Using this additional
insight, we developed two MPC algorithms which check
these conditions at runtime. Although the additional com-
putational effort is not negligible, the proposed algorithms
may allow us to shorten the prediction horizon used in the
optimization. This reduces, in general, the complexity of
the problem significantly which may imply a reduction of
the overall computational costs.

REFERENCES

Alamir, M. and Bornard, G. (1995). Stability of a trun-
cated infinite constrained receding horizon scheme: the
general discrete nonlinear case. Automatica, 31(9),
1353–1356.

Allgöwer, F. and Zheng, A. (2000). Nonlinear model
predictive control, volume 26 of Progress in Systems and
Control Theory. Birkhäuser Verlag, Basel. Papers from
the workshop held in Ascona, June 2–6, 1998.

Altmüller, N., Grüne, L., and Worthmann, K. (2010).
Receding horizon optimal control for the wave equation.
In Proceedings of the 49th IEEE Conference on Decision
and Control, 3427–3432. Atlanta, Georgia.

Badgwell, T. and Qin, S. (2003). A survey of industrial
model predictive control technology. Control Engineer-
ing Practice, 11, 733–764.

Chen, H. and Allgöwer, F. (1999). Nonlinear model
predictive control schemes with guaranteed stability.
In Nonlinear Model Based Process Control, 465–494.
Kluwer Academic Publishers, Dodrecht.

Galaz, M., Ortega, R., Bazanella, A., and Stankovic, A.
(2003). An energy-shaping approach to the design of
excitation control of synchronous generators. Automat-
ica J. IFAC, 39(1), 111–119.

Giselsson, P. (2010). Adaptive Nonlinear Model Predictive
Control with Suboptimality and Stability Guarantees.
In Proceedings of the 49th Conference on Decision and
Control, 3644–3649. Atlanta, GA.

Graichen, K. and Kugi, A. (2010). Stability and incremen-
tal improvement of suboptimal MPC without terminal
constraints. IEEE Trans. Automat. Control. To appear.

Grimm, G., Messina, M., Tuna, S., and Teel, A. (2005).
Model predictive control: for want of a local control Lya-
punov function, all is not lost. IEEE Trans. Automat.
Control, 50(5), 546–558.

Grüne, L. (2009). Analysis and design of unconstrained
nonlinear MPC schemes for finite and infinite dimen-
sional systems. SIAM Journal on Control and Opti-
mization, 48, 1206–1228.

Grüne, L. and Pannek, J. (2009). Practical NMPC sub-
optimality estimates along trajectories. Sys. & Contr.
Lett., 58(3), 161–168.

Grüne, L., Pannek, J., Seehafer, M., and Worthmann,
K. (2010). Analysis of unconstrained nonlinear MPC
schemes with varying control horizon. SIAM J. Control
Optim., 48(8), 4938–4962.

Ito, K. and Kunisch, K. (2002). Receding horizon optimal
control for infinite dimensional systems. ESAIM Control
Optim. Calc. Var., 8, 741–760.

Jadbabaie, A. and Hauser, J. (2005). On the stability of
receding horizon control with a general terminal cost.
IEEE Trans. Automat. Control, 50(5), 674–678.

Keerthi, S. and Gilbert, E. (1988). Optimal infinite-
horizon feedback laws for a general class of constrained
discrete-time systems: stability and moving-horizon ap-
proximations. J. Optim. Theory Appl., 57(2), 265–293.

Magni, L., Raimondo, D., and Allgöwer, F. (2009). Non-
linear model predictive control. Towards new challenging
applications. Springer Berlin.

Magni, L. and Scattolini, R. (2007). Robustness and
robust design of MPC for nonlinear discrete-time sys-
tems. In R. Findeisen, F. Allgöwer, and L.T. Biegler
(eds.), Assessment and future directions of nonlinear
model predictive control, volume 358 of Lecture Notes
in Control and Inform. Sci., 239–254. Springer, Berlin.

Pannek, J. (2009). Receding Horizon Control: A
Suboptimality–based Approach. PhD–Thesis in Math-
ematics, University of Bayreuth, Germany.

Rawlings, J.B. and Mayne, D.Q. (2009). Model Predictive
Control: Theory and Design. Nob Hill Publishing,
Madison.


