URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5623-7
Titelangaben
Baier, Robert ; Perria, Gilbert:
Set-valued Hermite interpolation.
Bayreuth
,
2011
Volltext
|
|||||||||
Download (627kB)
|
Abstract
The problem of interpolating a set-valued function with convex images is addressed by means of directed sets. A directed set will be visualised as a usually non-convex set in |R^n consisting of three parts together with its normal directions: the convex, the concave and the mixed-type part. In this Banach space, a mapping resembling the Kergin map is established. The interpolating property and error estimates similar to the point-wise case are then shown; the representation of the interpolant through means of divided differences is given. A comparison to other set-valued approaches is presented. The method developed within the article is extended to the scope of the Hermite interpolation by using the derivative notion in the Banach space of directed sets. Finally, a numerical analysis of the explained technique corroborates the theoretical results.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | erscheint in:
Journal of Approximation Theory. Bd. 163 (2011) Heft 10 . - S. 1349-1372 DOI: https://doi.org/10.1016/j.jat.2010.11.004 |
Keywords: | set-valued interpolation; Hermite interpolation; embedding of convex, compact sets; directed sets; derivatives of set-valued maps |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-5623-7 |
Eingestellt am: | 26 Mai 2021 12:47 |
Letzte Änderung: | 08 Jun 2021 07:56 |
URI: | https://epub.uni-bayreuth.de/id/eprint/5623 |