URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5601-5
Titelangaben
Baier, Robert ; Farkhi, Elza:
The Directed Subdifferential of DC functions.
Hausdorff-Research-Institute
Bonn
,
2008
Volltext
|
|||||||||
Download (902kB)
|
Abstract
Directed sets are a linear normed and partially ordered space in which the convex cone of all nonempty convex compact sets in |R is embedded. This space forms a Banach space and provides a visualization of differences of embedded convex compacts sets as usually non-convex sets in |R with attached normal directions. A. Rubinov suggested to define a subdifference for differences of convex functions via the difference of embedded convex subdifferentials. The directed subdifferential and its visualization, the Rubinov subdifferential, inherit interesting properties from the Banach space of directed sets, e.g. most of A. Ioffe's axioms for subdifferentials hold as well as the validness of the sum rule for differentials not as an inclusion, but in form of an equality. The relations to other known convex and non-convex subdifferentials are discussed as well as optimality conditions and the easy recovering of descent and ascent directions.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | Nonsmooth analysis; Subdifferential calculus; Difference of convex (DC) functions; Optimality conditions; Ascent and descent directions |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-5601-5 |
Eingestellt am: | 25 Mai 2021 12:45 |
Letzte Änderung: | 25 Mai 2021 12:46 |
URI: | https://epub.uni-bayreuth.de/id/eprint/5601 |