Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

The Directed Subdifferential of DC functions

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00005601
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5601-5

Titelangaben

Baier, Robert ; Farkhi, Elza:
The Directed Subdifferential of DC functions.
Hausdorff-Research-Institute
Bonn , 2008

Volltext

[thumbnail of baier_et_al_the_directed_subdiff_him_2008.pdf]
Format: PDF
Name: baier_et_al_the_directed_subdiff_him_2008.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (902kB)

Abstract

Directed sets are a linear normed and partially ordered space in which the convex cone of all nonempty convex compact sets in |R is embedded. This space forms a Banach space and provides a visualization of differences of embedded convex compacts sets as usually non-convex sets in |R with attached normal directions. A. Rubinov suggested to define a subdifference for differences of convex functions via the difference of embedded convex subdifferentials. The directed subdifferential and its visualization, the Rubinov subdifferential, inherit interesting properties from the Banach space of directed sets, e.g. most of A. Ioffe's axioms for subdifferentials hold as well as the validness of the sum rule for differentials not as an inclusion, but in form of an equality. The relations to other known convex and non-convex subdifferentials are discussed as well as optimality conditions and the easy recovering of descent and ascent directions.

Weitere Angaben

Publikationsform: Preprint, Postprint
Keywords: Nonsmooth analysis; Subdifferential calculus; Difference of convex (DC) functions; Optimality conditions; Ascent and descent directions
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik
500 Naturwissenschaften und Mathematik > 510 Mathematik
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-5601-5
Eingestellt am: 25 Mai 2021 12:45
Letzte Änderung: 25 Mai 2021 12:46
URI: https://epub.uni-bayreuth.de/id/eprint/5601

Downloads

Downloads pro Monat im letzten Jahr