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1 Introduction

In [1, 2] a linear normed and partially ordered space is introduced, in which the convex
cone of all nonempty convex compact sets in Rn is embedded and thus a way to subtract
convex sets is opened. This space of so-called “directed sets” is a Banach and a Riesz space
for dimension n ≥ 2 and a Banach lattice for n = 1. It is defined without equivalence classes
as the difference in [25, 28, 31]. Our embedding is more involved than the one using only
support functions [13], but provides a visualization of DC sets as usually non-convex sets in
Rn with attached normal directions. In this space one can calculate “directed differences”
of convex compact sets and visualize them as non-convex sets in Rn.

In 2000 the late A. Rubinov suggested us to apply the directed differences of convex sets
in order to define a subdifferential of DC (differences of convex) functions. It took us a long
time to convince ourselves that the existence of such a new subdifferential is justified among
the variety of already known subdifferentials, convex and non-convex ones. The visualization
of the new subdifferential helped us to see its interesting properties and relations to other
known subdifferentials.

The paper is organized as follows: After some basic notations below, we recall several
well-known definitions of subdifferentials. In Section 3 we provide some basic definitions
and facts on the Banach space of directed sets and in Section 4 we define the directed
subdifferential and the Rubinov subdifferential and give some examples. In Section 5 we
describe the relations of the Rubinov subdifferential to well-known subdifferentials, and in
Section 6 we discuss conditions for optimality, saddle points, ascent and descent directions.

1.1 Basic Notations

Let C(Rn) be the set of all convex, compact, nonempty subsets of Rn. We denote by Sn

the unit sphere in Rn, and by cl(A), co(A) the closure and the convex hull of the set A
respectively. The following operations in C(Rn) are well-known:

A + B := {a + b | a ∈ A, b ∈ B} (Minkowski addition)
λ · A := {λ · a | a ∈ A} (scalar multiplication for λ ∈ R)

We call the set −A = (−1)A the pointvise negation of A. The support function in the
direction l ∈ Rn is δ∗(l, A) := max

a∈A
〈l, a〉. The support function for A ∈ C(Rn) is Lipschitz-

continuous and fulfills

δ∗(l, A + B) = δ∗(l, A) + δ∗(l, B), δ∗(l, λ · A) = λ · δ∗(l, A) (λ ≥ 0).

The Hausdorff distance between two sets in C(Rn) is

dH(A, B) = max
l∈Sn−1

|δ∗(l, A) − δ∗(l, B)|.

The support face (set of supporting points) for the direction l ∈ Sn−1 is

Y (l, A) := {y(l, A) ∈ A | 〈l, y(l, A)〉 = δ∗(l, A)}

which coincides with the subdifferential of the support function. Some known definitions of
differences of two sets are listed below:
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• algebraic difference
A − B := {a − b | a ∈ A, b ∈ B}

which is not useable in our context, since in general A − A⊃
6=
{0Rn}.

• geometric (Hadwiger-Pontryagin) difference [10, 27], sometimes called starshaped dif-
ference

A−* B := {x ∈ Rn | x + B ⊂ A}

This difference has the property that A−* A = {0}, but may often be empty.

• Demyanov’s difference [9], [30]

A−· B := co{y(l, A) − y(l, B) | l ∈ Sn−1, Y (l, A) and Y (l, B) are singletons}

2 Preliminaries – Some Known Subdifferentials

We recall first definitions of subdifferentials which are always convex. The classical convex
(Moreau/Rockafellar) subdifferential of a convex function f : Rn → R at x ∈ Rn is:

∂f(x) := {s ∈ Rn | ∀y ∈ Rn : 〈s, y − x〉 + f(x) ≤ f(y)}. (1)

The vector s ∈ ∂f(x) is called (convex) subgradient of f at x. This subdifferential is a
convex, compact and nonempty set for convex f : Rn → R (see e.g. [29]), and its support
function is the directional derivative

∂f(x) = {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′(x; l)}, (2)

where the directional derivative of f at x in direction l is defined as

f ′(x; l) := lim
tց0

f(x + tl) − f(x)

t
. (3)

In [18, Chapter 2, Section 1.5], the following list of axioms for subdifferentials for Lipschitz
functions is given.

(SD1) ∂f(x) = ∅, if x /∈ dom(f)

(SD2) ∂f(x) = ∂g(x), if f and g coincide in a neighborhood of x
or as Rockafellar proposed:
∂f(x) = ∂g(x), if there exists a neighborhood U of (x, f(x)) with U ∩ epi f = U ∩ epi g

(SD3) If f is convex, then ∂f(x) coincides with the classical convex subdifferential.

(SD4) If f satisfies the Lipschitz condition with constant L in a neighborhood of x, then
‖s‖ ≤ L for all s ∈ ∂f(x).

(SD5) If x is a local minimizer of f , then 0 ∈ ∂f(x).
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(SD6) If n = n1 + n2 and x(i) ∈ Rni, i = 1, 2, with x = (x(1), x(2)) ∈ Rn and f(x) =
f1(x

(1)) + f2(x
(2)), then

∂f(x) ⊂ ∂f1(x
(1)) × ∂f2(x

(2)). (4)

(SD7) If λ > 0, b ∈ Rm, A ∈ Rm×n being a surjective matrix are given and g(x) = λ·f(Ax+b),
then ∂g(x) = λ · A⊤∂f(Ax + b), where A⊤ denotes the transposed matrix.

(SD8) If χS denotes the indicator function of S ⊂ Rn, i.e.

χS(x) =

{
0 if x ∈ S,

∞ otherwise,

then

∂f(x) =
{
s ∈ Rn : (s,−1) ∈ ∂χepi f (x, f(x))

}
(5)

Naturally, the classical convex subdifferential satisfies the above axioms. In addition it
fulfills the following stronger form of (SD6) for convex functions g, h : Rn → R and x ∈ Rn,
sometimes called Moreau–Rockafellar theorem or the Sum Rule (cf. [29, Theorem 23.8]):

(SR) ∂(g + h)(x) = ∂g(x) + ∂h(x).

This stronger equality is not fulfilled for many other subdifferentials of non-convex fuc-
tions.

We now define some other convex subdifferentials. The Dini-Hadamard subdifferential
studied e.g. in [3, 26, 16, 12] and in [9, Section III.4] (under the name “Penot subdifferen-
tial”), sometimes called the radial subdifferential or Gâteaux-subdifferential, is defined for a
function f : Rn → R that has directional derivatives in x ∈ Rn for all directions l ∈ Sn−1:

∂DHf(x) := {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′(x; l)}. (6)

This definition is identical to (2) for convex functions, but the directional derivative is not
necessarily a convex function w.r.t. l for a non-convex function.

If f : Rn → R is a DC function with f = g − h, it is observed in [12], [9, Chapter III,
Proposition 4.1], that the Dini-Hadamard subdifferential equals the geometric difference of
the two convex subdifferentials, i.e.

∂DHf(x) = ∂g(x)−* ∂h(x). (7)

Thus, the Dini-Hadamard subdifferential may be empty (cf. [12, Section 2.1]), else it is always
closed and convex.

To introduce the Michel-Penot subdifferential [21], we recall that the Michel-Penot di-
rectional derivative of a function f : Rn → R in direction l ∈ Rn at x is

f ′
MP (x; l) := sup

η∈Rn

lim sup
tց0

f(x + t(l + η)) − f(x + tl)

t
,
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and the Michel-Penot subdifferential of f at x is

∂MP f(x) := {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′
MP (x; l)}. (8)

The following connection between the Michel-Penot subdifferential and the Demyanov dif-
ference follows from [7, Theorem 6.1] for any DC function f = g − h (g, h convex), and
l, x ∈ Rn:

f ′
MP (x; l) = sup

η∈Rn

(
f ′(x; l + η) − f ′(x; l)

)

and the Michel-Penot subdifferential calculates as

∂MP f(x) = ∂g(x)−· ∂h(x) (9)

The most well-known subdifferential of a non-convex function is probably the Clarke’s
subdifferential (cf. [4]), which is also a convex set. For f : Rn → R and l, x ∈ Rn, the Clarke
directional derivative of f at x in direction l is the limit:

f ′
Cl(x; l) := lim sup

tց0
y→x

f(y + tl) − f(y)

t
.

The Clarke subdifferential is defined as

∂Clf(x) := {s ∈ Rn | ∀l ∈ Rn : 〈s, l〉 ≤ f ′
Cl(x; l)}. (10)

As it is well-known, cf. e.g., [5, 7],

∂DHf(x) ⊆ ∂MP f(x) ⊆ ∂Clf(x),

and they are equal in the case of a convex function f . These inclusions may be strict as it
is shown in the examples in Section 4.

Now, we recall definitions of some non-convex subdifferentials. The most famous non-
convex subdifferential is the (basic/lower) subdifferential of Mordukhovich, [22], [24, Defini-
tion 1.77], ∂Mf(x), which is equivalent to the approximate subdifferential of Ioffe in finite
dimensions [14, 15, 17], [24, Theorem 3.59] and may be defined as

∂Mf(x) = cl{ limits of sequences of proximal subgradients of f at xk → x }. (11)

Recall that a vector v is a proximal subgradient of f at x, if for some ε > 0

f(y) − f(x) ≥ 〈v, y − x〉 − ε · ‖y − x‖2.

As it is well-known, the Mordukhovich subdifferential is a compact in Rn, and the Clarke
subdifferential is its (closed) convex hull (see e.g., [15], [24, Theorem 3.57]).

The “linear” subdifferential of Treiman [32, 33], ∂T f(x), is a subset of the Mordukhovich
one, constructed as in (11) with only special “linear” sequences of proximal subgradients.

Finally, we mention the quasidifferential of Demyanov-Rubinov [9, Chapter III, Section
2] of DC functions, defined as an element of a linear normed space of equivalence classes
generated by pairs of convex sets, following the approach of R̊adström in [28]. For the DC
function f(x) = g(x) − h(x), its quasidifferential is generated by the pair [∂g(x),−∂h(x)].
A tool to get rid of the non-uniqueness of the pairs, keeping other positive features of this
approach, is the space of directed sets.

To define our directed subdifferential of a DC function as an element of this space, we
need some background on directed sets, presented in the next section.
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3 Directed Sets

Extending the parametrization of convex compacts via their support functions, we define a
directed set as a pair of mappings that associates to each unit direction a (n−1)-dimensional
directed set (“directed supporting face”) and a scalar (the value of the “support function”)
in this direction. This method enables us to use recursive constructions.

The definition of directed sets is inductive in the dimension n ≥ 1 and based on the
notion of directed interval for n = 1. Our definition of directed intervals is based on support
functions, and is equivalent to the generalized and directed intervals ([19, 20]).

Definition 3.1 A directed interval
−→
A is a point in R2 or, equivalently, a function

a1 := {−1, 1} → R, i.e.

−→
A = (a1(l))l=±1 = (a1(−1), a1(1)) ∈ R2.

D(R) denotes the set of all directed intervals.

Denote
−−−→
[α, β] := (−α, β), where α = −a1(−1), β = a1(1).

Linear combinations of directed intervals are calculated as linear combinations of vectors:

λ
−−−−→
[α1, β1] + µ

−−−−→
[α2, β2] =

−−−−−−−−−−−−−−−−→
[λα1 + µα2, λβ1 + µβ2], λ, µ ∈ R.

We visualize a directed interval
−−−→
[α, β] attaching to every its end points the corresponding

unit normal vector, l1 = −1 to the point α and l2 = 1 to β. The directed interval is proper
when α ≤ β (then the normals are pointing outwards) and improper otherwise (with normals
pointing inwards). Some proper and improper intervals are visualized in Example 3.2.

Example 3.2 One proper and one improper interval, obtained by subtraction of directed
intervals are shown here:

−−−−→
[−3, 5] −

−−−−→
[−1, 2] =

−−−−→
[−2, 3] and

−−−−→
[−1, 2] −

−−−−→
[−3, 5] =

−−−−→
[2,−3]

−2 −1 0 1 2 3 −3 −2 −1 0 1 2

proper interval
−−−−→
[−2, 3] ∈ D(R) the inverse

−−−−→
[2,−3] of

−−−−→
[−2, 3]

Another improper interval as well as the embedded scalar 1 are visualized below:

−4 −3 −2 −1 0 1 0.0 0.5 1.0 1.5 2.0

improper interval
−−−−→
[1,−4] ∈ D(R) degenerate interval

−−→
[1, 1]

Motivated by describing the convex, compact, nonempty set A for each direction l ∈ Sn−1

by its (n − 1)-dimensional supporting face and the value of the support function, the linear
normed space D(Rn) of the directed sets in Rn is constructed inductively.

Definition 3.3
−→
A is called a directed set
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(i) in R, if it is a directed interval. Its norm is ‖
−→
A‖1 = max

l=±1
|a1(l)|.

(ii) in Rn, n ≥ 2, if there exist a continuous function an : Sn−1 → R and a uniformly

bounded function
−−→
An−1 : Sn−1 → D(Rn−1) with respect to ‖ · ‖n−1

Then, we denote
−→
A = (

−−−−→
An−1(l), an(l))l∈Sn−1

and define its norm as

‖
−→
A‖ := ‖

−→
A‖n := max{ sup

l∈Sn−1

‖
−−−−→
An−1(l)‖n−1, max

l∈Sn−1

|an(l)|}.

The set of all directed sets in Rn is denoted by D(Rn).

The linear operations are defined recursively, on the two components of the directed sets
−→
A = (

−−−−→
An−1(l), an(l))l∈Sn−1

,
−→
B = (

−−−−→
Bn−1(l), bn(l))l∈Sn−1

:

−→
A +

−→
B := (

−−−−→
An−1(l) +

−−−−→
Bn−1(l), an(l) + bn(l))l∈Sn−1

λ ·
−→
A := (λ ·

−−−−→
An−1(l), λ · an(l))l∈Sn−1

(λ ∈ R).
−→
A −

−→
B :=

−→
A + (−

−→
B ) = (

−−−−→
An−1(l) −

−−−−→
Bn−1(l), an(l) − bn(l))l∈Sn−1

(12)

It is proved in [1] that (D(Rn), +, ·) is a Banach space. The embedding Jn : C(Rn) → D(Rn)

which determines for every set A ∈ C(Rn) its embedded image
−→
A ∈ D(Rn) is defined as:

(i) For n = 1,
−−→
[a, b] = J1([a, b]) := (−a, b).

(ii) For n ≥ 2,
−→
A = Jn(A) :=

(
Jn−1(Pn−1,l(Y (l, A)), δ∗(l, A)

)
l∈Sn−1

, where

Pn−1,l(x) := πn−1,nRn,l(x − δ∗(l, A)l) and πn−1,n ∈ R(n−1)×n is the natural projection,
Rn,l is a fixed rotation for every l ∈ Sn−1 satisfying

Rn,l(l) = en, Rn,l(span{l}⊥) = span{e1, e2, . . . , en−1}. (13)

We introduce a multiplication of a matrix M ∈ Rm×n for a difference of two embedded

convex compacts
−→
A = Jn(A),

−→
B = Jn(B) and A, B ∈ C(Rn):

M · (
−→
A −

−→
B ) := Jm(M · A) − Jm(M · B)

The visualization for a directed set in D(Rn) consists of three parts: the convex, the
concave and the mixed type parts. We recall their definitions here.

Definition 3.4 Let
−→
A ∈ D(Rn). The convex (positive) part Pn(

−→
A ) and the concave

(negative) part Nn(
−→
A ) of

−→
A are defined by:

Pn(
−→
A ) := {x ∈ Rn | for every l ∈ Sn−1 : 〈l, x〉 ≤ an(l)},

Nn(
−→
A ) := {x ∈ Rn | for every l ∈ Sn−1 : 〈l, x〉 ≥ an(l)}.
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The mixed-type part Mn(
−→
A ) is defined recursively and collects all reprojected points from

the visualization of the “support faces” which are not elements of the convex or concave part.

M1(
−→
A ) := ∅, V1(

−→
A ) := P1(

−→
A ) ∪ N1(

−→
A ) (n = 1)

Mn(
−→
A ) :=

⋃
l∈Sn−1

{x ∈ Qn,l(Vn−1(
−−−−→
An−1(l))) | x /∈ Pn(

−→
A ) ∪ Nn(

−→
A )} (n ≥ 2)

The visualization Vn : D(Rn) ⇒ Rn is the union of the three parts

Vn(
−→
A ) := Pn(

−→
A ) ∪ Nn(

−→
A ) ∪ Mn(

−→
A ) (n ≥ 2) (14)

with the reprojection Qn,l(y) := R−1
n,lπ

⊤
n−1,ny + an(l)l, y ∈ Rn−1.

The boundary mapping Bn : D(Rn) ⇒ Rn is defined as

Bn(
−→
A ) := ∂Pn(

−→
A ) ∪ ∂Nn(

−→
A ) ∪ Mn(

−→
A ).

Except the degenerate case when Vn(
−→
A ) consists of a single point, at least one of the

convex and the concave part of A is empty. It may happen that both of them are empty
and the visualization consists only of the mixed-type part. In the one-dimensional case

the mixed-type part is empty, and in the non-degenerate case exactly one of P1(
−−→
[a, b]) and

N1(
−−→
[a, b]) is empty.
The visualization of the difference of directed sets is strongly related to other differences.

The following equalities are known for
−→
A ∈ D(Rn), cf. [2]:

Pn(−
−→
A ) = −Nn(

−→
A ), Nn(−

−→
A ) = −Pn(

−→
A ), Vn(−

−→
A ) = −Vn(

−→
A ).

Furthermore, if A, B ∈ C(Rn), then

Pn(
−→
A −

−→
B ) = A−* B, Nn(

−→
A −

−→
B ) = −(B −* A), co Bn(

−→
A −

−→
B ) = A−· B, (15)

⋃

l∈Sn−1

{
y(l, A) − y(l, B) | Y (l, A), Y (l, B) are singletons

}
⊂ Bn(

−→
A −

−→
B ).

Example 3.5 The visualization of the inverse in Fig. 1 comprises the pointwise negations
of the boundary points, keeping the corresponding normal directions l. Note that if the set A

is symmetric with respect the origin, then the visualizations of
−→
A and −

−→
A coincide, and the

only way to distinguish between them is to add the normal vectors to the visualisation.

The operations addition, scalar multiplication commute with the embedding and the
visualisation, cf. [2]. Namely, for A, B ∈ C(Rn) and λ ≥ 0:

Jn(A) + Jn(B) =Jn(A + B) Vn(
−→
A +

−→
B ) =A + B

λ · Jn(A) =Jn(λ · A) Vn(λ ·
−→
A ) =λ · A

(16)
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−1.5 −1 −0.5 0 0.5 1 1.5
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0

0.5
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1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1:
−→
A resp. −

−→
A for

−→
A = Jn(A), A = {(x, y) ∈ R2 | y ≥ 0, x2 + y2 ≤ 1}

4 The directed subdifferential

The following definition was suggested to us by A. M. Rubinov.

Definition 4.1 Let g, h : Rn → R be convex and f(x) = g(x) − h(x). The directed
subdifferential of f at x is defined by

−→
∂ f(x) = Jn(∂g(x)) − Jn(∂h(x)). (17)

We call its visualisation the Rubinov subdifferential:

∂Rf(x) = Vn

(−→
∂ f(x)

)
(18)

The vector s ∈ ∂Rf(x) is called Rubinov subgradient of f at x.

We note that the directed subdifferential is well-defined for DC functions, i.e. ∂Rf(x) does
not depend on the specific representation f = g− h, which may be easily checked, using the
property (16) of the embedding Jn and the fact that D(Rn) is a vector space in which the
cancellation law holds.
Also, the Rubinov subdifferential is always a nonempty compact, not necessarily convex set.

The following properties of the directed subdifferential for DC functions are established
(note the stronger versions of (SD6) and (SD7) being also valid for negative λ):

Proposition 4.2 Let f : Rn → R be a DC-function and x ∈ Rn. Then, the directed
subdifferential of f at x fulfills:

(SD1) x /∈ dom(f) if and only if ∂Rf(x) is empty.

(SD2) If f̃ is a DC-function that coincides with f in an open neighbourhood U of x, then
−→
∂ f(x) =

−→
∂ f̃(x).

(SD3) If f is convex, then ∂Rf(x) coincides with the classical convex subdifferential ∂f(x),

i.e.
−→
∂ f(x) = Jn(∂f(x)).
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(SD4) If f has the local Lipschitz constant Lf ≥ 0 for the open neighbourhood U of x, then

‖s‖2 ≤ Lf for all s ∈ ∂Rf(x).

(SD′
6) Let n = n1 + n2 and x = (x(1), x(2)) ∈ Rn = Rn1 × Rn2. If fi : Rni → R is a DC

function, i = 1, 2, and f : Rn → R is defined by f(x) = f1(x
(1)) + f2(x

(2)), then

−→
∂ f(x) = Π⊤

1

−→
∂ f1(x

(1)) + Π⊤
2

−→
∂ f2(x

(2)),

with the projection Πi : Rn → Rni and Πi(x) = x(i) for x = (x(1), x(2)), i = 1, 2.

(SD′
7) If λ ∈ R, A ∈ Rm×n, b ∈ Rm, g : Rm → R is DC and f(x) = λ · g(Ax + b), then

−→
∂ f(x) = λ · A⊤ ·

(−→
∂ g

)
(Ax + b).

Moreover, the sum rule holds for each DC function f̃ :

(SR)
−→
∂ (f + f̃)(x) =

−→
∂ f(x) +

−→
∂ f̃(x)

Proof: We prove here only (SD3), part of (SD′
7) and (SR):

For (SD3), f = f − 0 holds so that
−→
∂ f(x) = Jn(∂f(x)) − Jn(0Rn).

In (SD′
7) we consider only f(x) = −f̃(x) with f̃(x) = g̃(x)−h̃(x). Clearly, f(x) = h̃(x)−g̃(x)

is a DC representation and hence,
−→
∂ f(x) = Jn(∂h̃(x)) − Jn(∂g̃(x)) which equals −

−→
∂ f̃(x).

In (SR) with f = g− h, f̃ = g̃− h̃, it follows the DC representation (g + g̃)− (h + h̃) for the
sum. From (SR) in Section 2 and (16) follows the sum rule for the directed subdifferential.

�

We note that the sum rule (SR) can only be proved for the directed subdifferential and not
for the Rubinov one, since the linear structure of the directed sets space D(Rn) is essential
in the proof. For the subdifferential of Rubinov, the left-hand side is only a subset of the
right-hand side, since the visualization of the sum of two directed sets is only a subset of the
Minkowski sum of their visualizations, which follows easily from the definitions.

The following relations follow from (7), (9), (15), and Definitions 3.4 and 4.1, and clarify
the place of the Rubinov subdifferential among other known subdifferentials:

Theorem 4.3 Let f : Rn → R be a DC-function and x ∈ Rn. Then,

∂DHf(x) = Pn(
−→
∂ f(x)) ⊂ Vn(

−→
∂ f(x)) = ∂Rf(x) ⊂ co(∂Rf(x)) = ∂MP f(x) (19)

∂MP f(x) = co(∂Rf(x)) = co(∂T f(x)) ⊂ co(∂Mf(x)) = ∂Clf(x) (20)

Directly from [5, Lemma 2.3] with the corresponding fact for the Michel-Penot subdiffer-
ential, it follows that the Rubinov subdifferential generalizes the Gâteaux differential.

Corollary 4.4 Let f = g − h be a DC function with Gâteaux differentiable functions g and
h, then the Rubinov subdifferential consists only of the gradient of f .
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The exact relation between the Rubinov subdifferential and the non-convex subdiffer-
entials of Mordukhovich and Treiman is not yet clear to us. The following examples show
that none of the subdifferentials of Rubinov and Mordukhovich is necessarily a subset of the
other.

Example 4.5 ([9, Ex. 9.1], [23, Gl. 1.2, Primer 2.6], [24, Section 1.3.2], [33])
Let f = g − h with g(x) = |x1|, h(x) = |x2|, x = (x1, x2) ∈ R2.
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Figure 2: Function plot resp. directed subdifferential for Example 4.5

By (SD6), the convex subdifferentials of g, h are

∂g(0) = [−1, 1] × {0}, ∂h(0) = {0} × [−1, 1].

For this function, the Dini-Hadamard subdifferential is empty, and the Michel-Penot subdif-
ferential coincides with Clarke’s one.

∂DHf(0) = ∅, ∂MP f(0) = ∂Clf(0) = [−1, 1]2,
−→
∂ f(0) = J2([−1, 1] × {0}) − J2({0} × [−1, 1]).

In this example, we have the following inclusions of the subdifferentials:

∂DHf(0) = ∅ ( ∂Rf(0) ( ∂MP f(0) = ∂Clf(0)

The Mordukhovich subdifferential of this function coincides with the Treiman one and consists
of two parallel edges of the unit square:

∂Mf(0) = ∂T f(0) = [−1, 1] × {−1, 1}.

The directed subdifferential comprises only a mixed-type part (its positive and negative part
are empty), as one can see in Figure 2. For this example, the union of the Mordukhovich
lower and upper subdifferential (cf. [23], [24, Definition 1.78]) in Fig. 3 gives the Rubinov
subdifferential which consists of the boundary of the square [−1, 1]2.

The Mordukhovich subdifferential in the previous example was a subset of the Rubinov
one, while in the next example the opposite inclusion holds.
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Figure 3: Mordukhovich lower and upper subdifferential for Example 4.5

Example 4.6 ([9, Section III.4, Example 4.2]) Let f = g − h, g, h : R2 → R with
g(x1, x2) = max{2x2, x

2
1 + x2}, h(x1, x2) = max{0, x2

1 + x2}.

∂g(x) = co
{
(0, 2), (2x1, 1)

}
, ∂h(x) = co

{
(0, 0), (2x1, 1)

}
,

∂DHf(0) = ∂MP f(0) =
{
(0, 1)

}
,

∂Clf(0) = co
{
(0, 0), (0, 1)

}
,

−→
∂ f(0) = J2

(
co

{
(0, 2), (0, 1)

})
− J2

(
co

{
(0, 0), (0, 1)

})
= J2

({
(0, 1)

})

Here, we have the following inclusions of the subdifferentials:

∂DHf(0) = ∂Rf(0) = ∂MP f(0) = ∂T f(0) ( ∂Clf(0)

As it is known, the Mordukhovich subdifferential contains the extremal points (0, 0) and (0, 1)
of Clarke subdifferential (cf. Fig. 4), thus

∂Rf(0) = ∂MP f(0) ( ∂Mf(0).

The following conjecture may be derived from the last examples: If the Clarke subdiffer-
ential coincides with Michel-Penot one, then the Rubinov subdifferential coincides with the
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Figure 4: Function plot resp. Clarke’s subdifferential for Example 4.6
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Mordukhovich symmetric subdifferential (the union of the lower and the upper subdifferen-
tial). It is an open question whether a similar relation between Rubinov and the Treiman
subdifferential holds.

5 Optimality conditions, descent and ascent directions

Here we translate some known necessary and sufficient conditions for an extremum into the
language of directed subdifferential. In the case when the Dini-Hadamard subdifferential is
non-empty, these conditions are equivalent to those known for it. If it is empty (which means
that the considered point is not a minimizer), we provide a simple criterion which says if a
given direction is a direction of ascent or descent.

Let f : Rn → R, l ∈ Sn−1. We first recall some definitions. If there exists ε > 0 such
that f(x + tl) < f(x) for t ∈ (0, ε], then l is called direction of descent at x. In the case of
f(x+ tl) > f(x) for t ∈ (0, ε], l is called direction of ascent at x. We call the point x a strict
saddle point, if there exist a direction of ascent with a positive directional derivative and a
direction of descent with a negative directional derivative at x.
Clearly, if all directions are direction of ascent at x, it is a strct minimum, and similarly for
a strict maximum.
Next, we state well-known necessary conditions for an extremum of a DC function in terms
of the directed subdifferential.

Proposition 5.1 Let f : Rn → R be a DC-function and x ∈ Rn. Then

(i) If x is a local minimizer of f , then 0Rn ∈ Pn(
−→
∂ f(x)) = ∂DHf(x).

(ii) If x is a local maximizer of f , then 0Rn ∈ Nn(
−→
∂ f(x)) = −∂DH(−f)(x).

(iii) If x is a strict saddle-point of f and 0Rn ∈ Vn(
−→
∂ f(x)), then 0Rn ∈ Mn(

−→
∂ f(x)).

Proof: (i) If f = g − h has a local minimum in x, then necessarily 0Rn ∈ ∂g(x)−* ∂h(x),
cf. [26, 8, 12] and [9, Chapter V, Theorem 3.1]. But the geometric difference coincides with

the positive part of the directed subdifferential
−→
∂ f(x) = Jn(∂g(x)) − Jn(∂h(x)).

(ii) Similarly, 0Rn ∈ ∂h(x)−* ∂g(x) is a necessary condition for a local maximum of f at
x. The geometric difference could be retranslated as negative part of the visualization of
−→
∂ f(x).

(iii) Since there exists l1, l2 ∈ Sn−1 with f ′(x; l1) < 0 and f ′(x; l2) > 0, the origin could not
lie in the positive or negative part of the visualization. Hence, it must lie in the mixed-type
part of the directed subdifferential. �

Corollary 5.2 (i) If x is a local extremum point of f , then 0Rn ∈ ∂Rf(x).

(ii) If Pn(
−→
∂ f(x)) = Nn(

−→
∂ f(x)) = ∅, then x is not an extremum.

(iii) If 0 ∈ ∂MP f(x) \
(
Pn(

−→
∂ f(x)) ∪ Nn(

−→
∂ f(x))

)
, then x is not an extremum.

(iv) If 0 ∈ Mn(
−→
∂ f(x)) ⊆ ∂Rf(x), then x is not an extremum.

It is known that if f : Rn → R is directional differentiable for l ∈ Sn−1, then
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• if f ′(x; l) < 0, then l is a direction of descent,

• if f ′(x; l) > 0, then l is a direction of ascent.

The following simple criterion helps to distinguish between directions of ascent and de-
scent by the sign of the second component of the directed subdifferential (its “support”
function).

Proposition 5.3 Let f : Rn → R be a DC-function,
−→
∂ f(x) = (

−−−−→
An−1(l), an(l))l∈Sn−1

and
x ∈ Rn.
(i) If an(l) < 0, then l is a direction of descent at x.
(ii) If an(l) > 0, then l is a direction of ascent at x.

Proof: For f = g − h we have due to the embedding and (12) that

an(l) = δ∗(l, ∂g(x)) − δ∗(l, ∂h(x)) = g′(x; l) − h′(x; l) = f ′(x; l).

Clearly, the sign of the directional derivative determines whether l is a direction of ascent or
descent. �

On the visualization, this may be interpreted as follows: if for a given l there is a
boundary point z of the directed subdifferential with corresponding normal direction l such
that 〈l, z〉 < 0, then l is a descent direction, and similarly for an ascent direction.

Next, we formulate the classical sufficient first-order condition for a minimum (see e.g.,
[6, 11] and [9, Chapter V, Theorem 3.1]) for the directed subdifferential.

Proposition 5.4 Let f : Rn → R be a DC-function with f = g − h and x ∈ Rn.

(i) If 0Rn ∈ int Pn(
−→
∂ f(x)), then x is a strict local minimizer of f .

(ii) If 0Rn ∈ int Nn(
−→
∂ f(x)), then x is a strict local maximizer of f .

(iii) If 0Rn ∈ int ∂Rf(x), then x is a strict local extremum point of f .

Proof: The proof is similar to the one of Proposition 5.1 and uses the sufficient condition
for optimality “0Rn ∈ int

(
∂g(x)−* ∂h(x)

)
” mentioned above. �

For a further reference to ascent and descent directions, see e.g., [9, Section V.1].
Let us now go back to the examples discussed in the last section.

Example 5.5 Consider the funtion f from Example 4.5. As mentioned before, the Dini-
Hadamard subdifferential at x = 0 is empty, thus the origin is not a minimum point (also
the Dini-Hadamard of −f(x) is empty, so it is not a maximum). Clearly, the zero is out-
side the non-convex subdifferentials of Mordukhovich, Rubinov and Treiman, but is inside
the subdifferentials of Clarke and Michel-Penot. A closer look at the visualization of the di-
rected subdifferential (Fig. 2) enables to conclude that the directions (1, 0), (−1, 0) are ascent
directions, and (0, 1), (0,−1) are descent directions. Checking the values of f ′(x; l) in these
directions we conclude that the origin is a strict saddle point.

Example 5.6 We consider the function f(x) from Example 4.6. Here, zero is outside the
Dini-Hadamard, Rubinov, Michel-Penot and Treiman subdifferentials, but belongs to the sub-
differentials of Mordukhovich and Clarke. Thus the latter two subdifferentials deliver critical
points for the origin being no extremum.

13



In the next example, the criterion in Proposition 5.3 together with Propositions 5.1 and
5.4 are used to test the optimality conditions.

Example 5.7 Let f = g − h with g(x) = |x1| + |x2|, h(x) = r ·
√

x2
1 + x2

2 for x =
(x1, x2) ∈ R2. The function and the directed subdifferential are plotted in Fig. 5–8 for
r ∈ {0.5, 1.0, 1.25, 1.5}.
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Figure 5: Function plot resp. directed subdifferential for Example 5.7 with r = 0.5

r = 0.5: One can see in Figure 5 that the origin is a global minimum. For this function, the
sufficient condition for a minimum in Proposition 5.4 is fulfilled:

0Rn ∈ int Pn(
−→
∂ f(0)) = int ∂DHf(0) ⊂ int ∂Rf(0) ⊂ int ∂MP f(0) ⊂ int ∂Clf(0)

and all directions are directions of ascent (all the normals are pointing from the corresponding
boundary points away from the origin).

−2
−1

0
1

2

−2

−1

0

1

2
0

0.5

1

1.5

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 6: Function plot resp. directed subdifferential for Example 5.7 with r = 1

r = 1: All points on the x- and y-axis are global minima, cf. Figure 6. Here, the necessary
condition for the origin being a local minimum in Proposition 5.1 is satisfied:

∂DHf(0) = {0Rn}, 0Rn ∈ ∂Rf(0), 0Rn ∈ int ∂MP f(0) ⊂ int ∂Clf(0).

and all directions l ∈ Sn−1 except for (±1, 0), (0,±1) fulfill f ′(x; l) > 0.
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Figure 7: Function plot resp. directed subdifferential for Example 5.7 with r = 1.25

r = 1.25: One can see in Figure 7 that the origin is a saddle point, although it is a critical
point for the Michel-Penot and Clarke subdifferential. For this function,

∂DHf(0) = ∅, 0Rn /∈ ∂Rf(0), 0Rn ∈ int ∂MP f(0) ⊂ int ∂Clf(0).

The directions (±
√

2
2

,±
√

2
2

) are directions of ascent, while (±1, 0), (0,±1) are directions of
descent.
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Figure 8: Function plot resp. directed subdifferential for Example 5.7 with r = 2

r = 2: One can see in Figure 8 that the origin is a global maximum (sufficient condition for
a maximum in Proposition 5.4 is satisfied). For this function, ∂DHf(0) = ∅ and

0Rn ∈ int Nn(
−→
∂ f(0)) = − int ∂DH(−f)(0) ⊂ int ∂Rf(0) ⊂ int ∂MP f(0) ⊂ int ∂Clf(0)

and all directions are directions of descent (all the normals are pointing from the correspond-
ing boundary points towards the origin).

6 Conclusions

The directed subdifferential is a directed (oriented) set, and not a usual set in Rn. Its
non-oriented visualization, the Rubinov subdifferential, is a compact connected (generally
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non-convex) subset of Rn with its boundary parametrized by the (normal) directions of the
unit sphere in Rn: to each (unit) direction l there is a unique connected “support face” lying
in a hyperplane with normal l.

As we saw in the previous section, the information of the orientation of the normals (the
sign of the “support function”) enables to identify directions of descent or ascent. In the
future research we intend to extend the calculus rules for the new subdifferential, and to
introduce and study directed/Rubinov normal and tangent cones. We hope that the investi-
gation of the relations between the directed/Rubinov subdifferential and the subdifferentials
of Mordukhovich and Treiman may indicate whether it is possible to extend the definition
of the Rubinov subdifferential beyond the case of DC functions. Furthermore, the property
(SD8) should be proved.
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