URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-5544-8
Titelangaben
Baier, Robert ; Farkhi, Elza:
Integration and Regularity of Set-Valued Maps Represented by Generalized Steiner Points.
Bayreuth
,
2006
Volltext
|
|||||||||
Download (250kB)
|
Abstract
A family of probability measures on the unit ball in |Rn generates a family of generalized Steiner (GS-)points for every convex compact set in |Rn. Such a "rich" family of probability measures determines a representation of a convex compact set by GS-points. In this way, a representation of a set-valued map with convex compact images is constructed by GS-selections (which are defined by the GS-points of its images). The properties of the GS-points allow to represent Minkowski sum, Demyanov difference and Demyanov distance between sets in terms of their GS-points, as well as the Aumann integral of a set-valued map is represented by the integrals of its GS-selections. Regularity properties of set-valued maps (measurability, Lipschitz continuity, bounded variation) are reduced to the corresponding uniform properties of its GS-selections. This theory is applied to formulate regularity conditions for the first-order of convergence of iterated set-valued quadrature formulae approximating the Aumann integral.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Zusätzliche Informationen (öffentlich sichtbar): | Erscheint in: Set-Valued Analysis. Bd. 15 (März 2007) Heft 2 . - S. 185-207 |
Keywords: | Generalized Steiner selections; Demyanov distance; Aumann integral; Castaing representation; Set-valued maps; Arithmetic set operations |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-5544-8 |
Eingestellt am: | 19 Mai 2021 06:10 |
Letzte Änderung: | 17 Jun 2021 09:29 |
URI: | https://epub.uni-bayreuth.de/id/eprint/5544 |