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1 Introduction

We study representations of set-valued mappings with convex compact im-
ages in Rn by special single-valued selections constructed by generalized
Steiner (GS-)points of their images. The idea of representing sets in C(Rn),
the space of nonempty convex compact subsets of Rn, with “weighted Steiner
points” obtained by various probability measures on the unit ball, was no-
ticed in [20], and developed by Dentcheva [14] as an entire framework.

Every convex compact in Rn may be represented as

C =
⋃

α∈Msp

{Stα(C)},

where Msp is a rich enough family of probability measures defined on the
unit ball in Rn, and Stα(C) is the GS-point corresponding to such a measure
α. For a set-valued map F (·), the family of generalized Steiner selections
{ Stα(F (·)) | α ∈ Msp } is called here GS-representation of this map. The
term GS-selection is used as an abbreviation for the selection Stα(F (·)).

In [14, 12, 13], Msp consists of measures with C1-density functions (we
call them “smooth measures”), and a Castaing representation of set-valued
maps by such GS-selections is constructed and applied to non-smooth anal-
ysis and stochastic optimization.

The following properties of the GS-points make them especially appro-
priate for the analysis of regularity and approximations of set-valued maps.

1. Stα(C + D) = Stα(C) + Stα(D) for the Minkowski sum of sets C, D
2. Stα(λC) = λ Stα(C) for λ ≥ 0
3. sup

α∈Msp

‖Stα(C)− Stα(D)‖ = dD(C,D),

where dD is the Demyanov metric in C(Rn)

The well-known representation of convex sets and set-valued mappings
by support functions [22] has properties analogous to the above, with the
Hausdorff metric in the third property. Thanks to these properties, it is
successfully applied to set-valued numerical approximation and integration
(see e.g. [17, 8, 5, 18]) .

In this paper we replace the representing support functions by the GS-
selections. To ensure uniform regularity properties of the selections, we have
to replace the Hausdorff metric with the stronger Demyanov metric [11, 15].

The properties 1.–2. imply the reduction of positive linear operators on
set-valued maps to the same operators on the GS-selections. Also by property
3., regularity properties of a set-valued map (e.g. bounded variation, Lipschitz
continuity etc.) are reduced to the same properties of the parametrizing fam-
ily of GS-selections. Parametrizations of regular set-valued map by smooth
selections are highly applicable in various fields (see e.g. [4, 2, 25, 16]).

Here, we introduce new notions of Lipschitz continuity and bounded vari-
ation of set-valued mappings by their GS-selections, and demonstrate how
these notions can be applied to the analysis of set-valued numerical integra-
tion.
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The third property yields e.g. that the GS-selections in [14] inherit Lip-
schitz continuity of the set-valued map with respect to the Demyanov metric
in a uniform way. Thus, generally, a Hausdorff Lipschitz continuous multi-
function does not have a GS-representation with uniformly Lipschitz selec-
tions, while such a representation exists for mappings which are Lipschitz
continuous with respect to the stronger Demyanov metric.

Motivated by numerical applications, we focus on GS-representations gen-
erated by smooth or special Dirac measures. To achieve the above proper-
ties also for Dirac measures, we modify slightly the definition of generalized
Steiner points of [14], leaving it unchanged in the case of smooth measures.

The main features which distinguish the GS-representation from other
known representations of set-valued maps by selections (see e.g. [19, 24, 4,
16]) are two: first, the parameter set Msp is universal, not related to the
considered multifunction, and second, we are not aware of any other selections
satisfying (analogues of) the above three properties.

The paper is organized as follows: Section 2 contains the necessary no-
tation and definitions as well as properties of the Steiner point. In the next
section representations of convex compacts with GS-points are studied. In
Section 4 the relations between arithmetic operations and representations
are discussed. The connection of GS-points to the Demyanov difference and
the Demyanov distance is also clarified there. New notions of variation and
Lipschitz continuity of set-valued maps related to GS-selections are studied
in Section 5. In Section 6 the Aumann integral is represented by integrals of
GS-selections and its simple approximation by Riemannian sums is analyzed.
An outline of future research is presented in the conclusions.

2 Preliminaries

First we introduce some notation. C(Rn) denotes the set of all convex, com-
pact, nonempty subsets of Rn, Br(x) is the closed ball of radius r centered at
x ∈ Rn, B1 is the closed unit ball in Rn and Sn−1 its boundary, Vn denotes
the Lebesgue volume of the unit ball.

Let C ∈ C(Rn). Denote by δ∗(l, C) = max
x∈C

〈l, x〉 the support function of

C in direction l ∈ Rn, and by

Y (l, C) := {c ∈ C | 〈l, c〉 = δ∗(l, C)}

the supporting face of C in this direction.
The Hausdorff distance between the sets A and B is denoted by dH(A,B).

The norm of a set C ∈ C(Rn) is ‖C‖ := maxx∈C ‖x‖. m(C) is defined to be
the (unique) norm-minimal point of C.

The point x ∈ C is called exposed point of C (with an exposed direction
l ∈ Rn), if Y (l, C) = {x}. Then, we express the dependence on the direction
as x = y(l, C). The set of all exposed points of C is denoted by exp(C).
Denote by TC ⊂ Rn the set of all exposed directions l of C, l ∈ Rn, for which
x = y(l, C) is an exposed point. TC is a set of full measure in Rn (cf. [27]).
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As arithmetic operations in C(Rn) we use the classical ones, namely the
Minkowski sum and the scalar multiplication:

C + D := {c + d | c ∈ C, d ∈ D} (for C,D ∈ C(Rn)),
λC := {λc | c ∈ C} (for C ∈ C(Rn), λ ∈ R)

Next we recall the notions of Demyanov difference and Demyanov distance
of two convex compact sets C,D ∈ C(Rn), which play a central role in our
exposition (see [11, 27, 15]).

C −· D = co
⋃

l∈TC∩TD

{y(l, C)− y(l,D)} ∈ C(Rn)

is the Demyanov difference of C and D. The Demyanov distance between the
sets C,D ∈ C(Rn) is

dD(C,D) = ‖C −· D‖. (2.1)

We recall the definition of the Steiner point of a set C ∈ C(Rn) [32, 33, 31]:

St(C) :=
1
Vn

∫
B1

m(Y (p, C)) dp (2.2)

Here and further in the text, dp denotes the Lebesgue measure, dµ(p) = 1
Vn

dp

is the normalized Lebesgue measure on B1 (recall that Vn = µ(B1)). We
note that the set-valued map l 7→ Y (l, C) is the marginal map of the sup-
port function of C and hence is upper semi-continuous (see e.g. [3, Chapter
1.2, Theorem 6]) and measurable w.r.t. the Borel σ-algebra (cf. [4, Theorem
8.2.9]). m(Y (·, C)) is measurable by [4, Corollary 8.2.13]. Since Y (·, C) is
µ-almost everywhere single-valued and bounded, m(Y (p, C)) coincides µ-a.e.
with y(p, C) and is µ-integrable. Hence,

St(C) =
1
Vn

∫
B1∩TC

y(p, C) dp =
∫

B1∩TC

y(p, C) dµ(p).

Recall some important properties of the Steiner point.

Remark 2.1 Let C,D ∈ C(Rn) and λ, ν ∈ R. Then, St(C) ∈ relint C ([28],
[30, (5.4.13)]) and

St(λC + νD) = λ St(C) + ν St(D), (2.3)
St(RC) = R St(C), if R is an orthogonal n× n-matrix, (2.4)

St(·) is Lipschitz continuous with respect to dH(·, ·). (2.5)

Steiner points of sets in R2 are characterized uniquely by (2.3) with λ = ν = 1
and (2.4) for R being a congruence transformation (composition of a rotation,
symmetry and a translation) and only by continuity in (2.5), cf. [29, 31]. The
optimal Lipschitz constant is recorded in [34].
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Definition 2.2 Let B be the Borel σ-algebra on B1. We use the notation

α(A) =
∫
A

α(dp) (A ∈ B)

for a probability measure α on B, i.e. a normalized (positive) measure with
α(B1) = 1 (cf. [9, Chapter II.9], [10, 14]). SM denotes the set of probability
measures α with C1(B1)-density function θ(·) with respect to µ. Thus,

α(A) =
∫
A

θ(p) dµ(p) =
1
Vn

∫
A

θ(p) dp.

We will call measures from SM shortly “smooth measures”.
The set M consists of all probability measures on B, AM is the set of atomic
(Dirac) measures α = α[l] ∈M, concentrated in a point l ∈ Sn−1, i.e.

α[l](A) =

{
0, if l /∈ A, A ∈ B,
1, if l ∈ A, A ∈ B.

Introducing the arithmetic operations on measures α, α̃ ∈M as

(λα)(A) := λα(A), (α + α̃)(A) := α(A) + α̃(A)

for A ∈ B and λ ≥ 0, we define the convex hull of AM in M as

co(AM) := {
k∑

i=1

λiαi |
k∑

i=1

λi = 1, λi ≥ 0, αi ∈ AM (i = 1, . . . , k), k ∈ N}.

Atomic measures concentrated in non-zero vectors of the interior of B1 are
equivalent to measures of AM (cf. Remark 3.3).

Recall the definition of a generalized Steiner point of Dentcheva [14] for
a measure α ∈ SM with density function θ(·):

S̃tα(C) =
∫
B1

m(Y (p, C)) α(dp) =
1
Vn

∫
B1

m(Y (p, C))θ(p) dp. (2.6)

Therefore, S̃tα(C) = St(C) follows for the uniform measure α with density
function θ(·) ≡ 1 by (2.2).

3 Representations of Sets by Generalized Steiner Points

First we define GS-points for a family of probability measures Msp ⊂M. In
this paper Msp is one of the classes AM, co(AM) or SM.

Definition 3.1 Let C ∈ C(Rn) and α ∈ Msp. We define the generalized
Steiner point (GS-point) of C by

Stα(C) :=
∫
B1

St(Y (p, C)) α(dp). (3.1)
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The definition remains valid for a general measure α ∈M, since the function
St(Y (·, C)) is bounded and measurable and hence α-integrable (cf. [9, Section
II.1]. Definition 3.1 coincides with (2.6) for smooth measures (see Lemma 3.2)
and extends (2.6) to a broader class of measures. Furthermore, the advantage
of (3.1) is that GS-points, defined for measures from Msp \SM, also inherit
basic properties of the classical Steiner point, which cannot be achieved with
definition (2.6) (see Section 4).

Next, we give explicit formulae of GS-points for various measures α.

Lemma 3.2 Let C ∈ C(Rn). Then,

Stα(C) =



∫
B1

m(Y (p, C))θ(p) dµ(p), for α ∈ SM with density θ(·),

St(Y (l, C)), for α = α[l] ∈ AM, l ∈ Sn−1,

y(l, C), for α = α[l] ∈ AM, l ∈ Sn−1 ∩ TC ,
k∑

i=1

λi Stαi
(C), for α =

k∑
i=1

λiαi ∈ co(AM).

Proof
(i) α ∈ SM
First, St(Y (·, C)) is µ-integrable by [20, Theorem 4.6]. The subintegral func-
tion in (3.1) differs to that in (2.6) only on a set of zero Lebesgue measure,
thus

Stα(C) =
∫

B1∩TC

y(p, C)θ(p) dµ(p) =
1
Vn

∫
B1

m(Y (p, C))θ(p) dp. (3.2)

(ii) α = α[p0] ∈ AM with p0 ∈ Sn−1

The bounded, measurable function St(Y (·, C)) is α-integrable with Stα(C) =
St(Y (p0, C)) which may be proved in a standard way (cf. [9, Section II.1]).

(iv) α ∈ co(AM)

For a measure α =
k∑

i=1

λiαi with αi = α[pi] ∈ AM concentrated in pi ∈ Sn−1,

λi ≥ 0,
k∑

i=1

λi = 1, the α-integrability and the formula are straightforward:

Stα(C) =
k∑

i=1

λi

∫
B1

St(Y (p, C)) αi(dp) =
k∑

i=1

λi Stαi
(C).

ut

Remark 3.3 Let C ∈ C(Rn) and α = α[l] ∈ M be the atomic measure con-
centrated in l ∈ int(B1). Then,

Stα(C) =


Steα(C), if l 6= 0Rn . Hereby, α̃ ∈ AM is concentrated

in η = 1
‖l‖ · l ∈ Sn−1,

St(C), if l = 0Rn , since Y (0Rn , C) = C.
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The following example illustrates the difference between the GS-points
constructed with measures from AM and those obtained with measures from
SM.

Example 3.4 Let C = [−1, 1] × {1}, l =
(
cos(φ)
sin(φ)

)
with φ ∈ [−π

2 , 3π
2 ) and

α = α[l] ∈ AM be the atomic measure concentrated in l. Then,

Stα(C) =


St(Y (l, C)) = St(C) =

(
0
1

)
(φ ∈ {−π

2 , π
2 }),

y(l, C) =
(
1
1

)
(φ ∈ (−π

2 , π
2 )),

y(l, C) =
(−1

1

)
(φ ∈ (π

2 , 3π
2 )).

For a measure β ∈ SM with a density function θ(·) and supp θ ⊂ Bε(m) ⊂
B1, by (3.2)

Stβ(C) =
1
V2

∫
B1

St(Y (p, C))θ(p) dp =
1
V2

∫
B1∩TC

y(p, C)θ(p) dp.

Denote by B+
1 the right half of B1 in R2 and by B−1 its left half. Then,

Stβ(C) =
∫

B+
1 ∩Bε(m)∩TC

θ(p)
(

1
1

)
dµ(p) +

∫
B−1 ∩Bε(m)∩TC

θ(p)
(
−1
1

)
dµ(p)

= λ

(
1
1

)
+ (1− λ)

(
−1
1

)
,

where λ = β(B+
1 ∩ Bε(m)) ∈ [0, 1]. Thus, the GS-points for smooth proba-

bility measures cover the complete set C, including its exposed points, while
the ones with measures of AM form a discrete set of three points. Here,
the classical Steiner point St(C) =

(
0
1

)
may be represented, e.g. by a smooth

measure β having a radially symmetric density function with ε = 1, m =
(
0
0

)
.

It follows from this example that the GS-points, in contrast with the
classical Steiner point, are not necessary in the relative interior of the set, and
even may be exposed points. Also, the exposed points here are represented
as GS-points in a non-unique way, not only by measures from AM as in
Lemma 3.2, but also by measures from SM.

It is proved in [14, Lemma 5.4] that the set of GS-points obtained by
smooth measures is dense in every convex compact subset of Rn

C =
⋃

α∈SM
{Stα(C)}. (3.3)

Furthermore, C could be represented with countably many smooth measures
(αm)m∈N (cf. [12, Theorem 3.4]) as

C =
⋃

m∈N
{Stαm(C)}. (3.4)
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Observe that the inequalities

〈l, Stα(C)〉 =
∫
B1

〈l, St(Y (p, C))〉 α(dp) ≤ δ∗(l, C) ·
∫
B1

α(dp) = δ∗(l, C)

for all l ∈ Sn−1, yield that Stα(C) ∈ C for every α ∈Msp.
We will also show that one may replace SM by co(AM) in the GS-

representation (3.3). The reason that we are interested in the atomic measures
α ∈ AM or α ∈ co(AM) is that they are technically simpler to realize.

Lemma 3.2 yields the following representation of the set of exposed points
of a given convex compact set C ∈ C(Rn):

exp(C) =
⋃
{Stα(C) |α = α[l] ∈ AM, l ∈ Sn−1 ∩ TC}. (3.5)

The representation of a convex compact set as the closed convex hull of its
exposed points (Theorem of Straszewicz) and (3.5) imply

Corollary 3.5 Let C ∈ C(Rn). If α ∈ AM, then Stα(C) ∈ ∂C and

C = co
⋃

α∈AM
{Stα(C)} =

⋃
α∈co(AM)

{Stα(C)}. (3.6)

The formula (3.6) gives another representation of a convex set different to
the theorems of Minkowski and Straszewicz (cf. [30, Corollary 1.4.5 resp.
Theorem 1.4.7]). This representation is non-minimal in general by (3.5), since
the exposed points are a subset of all GS-points obtained by measures ofAM.

In the case of polytopes, all extremal points are exposed ones. Thus, the
closure in (3.6) can be removed, since there is a finite number of atomic
measures concentrated in exposed directions corresponding to all extremal
points.

Corollary 3.6 Let P be a convex polytope with M vertices. Then, there
exists αi ∈ AM, i = 1, . . . ,M , concentrated in the vertices of P , with

P = co({Stαi(P ) | i = 1, . . . ,M}). (3.7)

Furthermore, there exists βi ∈ SM, i = 1, . . . ,M , such that (3.7) holds with
βi replacing αi.

Indeed, every vertex v ∈ P can be obtained as a GS-point with a smooth
measure β ∈ SM. For each vertex v there is a cone K(v) of corresponding
exposed directions with nonempty interior. Therefore, one may find a mea-
sure β ∈ SM with a density function θ such that supp(θ) ⊂ K(v). Then,
v = Stβ(P ).

We note that the measures in Corollary 3.6 are non-unique, since a vertex
in a polytope has many exposed directions.

The equality (3.3) and Corollary 3.5 show that every GS-point generated
by a smooth measure can be approximated by a converging sequence of con-
vex combinations of atomic measures and vice versa. We prove next that
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every exposed point may be approximated by GS-points obtained with mea-
sures from SM depending only on its exposed direction, which is important
for the further theorems.

To do this, we introduce the notion of a normal Dirac sequence which
slightly simplifies the one of [21, Chapter 4.3].

Definition 3.7 A sequence of C1-functions θm : Rn → R, m ∈ N, is called
a normal Dirac sequence, if for all m ∈ N

θm(·) ≥ 0,

∫
Rn

θm(p) dµ(p) = 1 and supp θm ⊂ B 1
m

(0).

The existence of such a normal Dirac sequence is obvious and may be found
e.g. in [21, Chapter 7.1C].

Lemma 3.8 Let C ∈ C(Rn) and α ∈ AM be concentrated in l ∈ Sn−1 ∩TC .
Consider a normal Dirac sequence (θm(·))m∈N. Then, the measures αm ∈
SM with density functions θm(· − lm), lm = m−1

m l, m ∈ N, fulfill

lim
m→∞

Stαm(C) = Stα(C) = y(l, C),

i.e. for all ε > 0 there exists M ∈ N such that for all m ≥ M we have

‖Stαm
(C)− Stα(C)‖ ≤ ε.

Proof Remark that Stα(C) = y(l, C). As we have noted, the set-valued map
l 7→ Y (l, C) is upper semi-continuous. Hence, for every ε > 0 there exists
δ = δ(ε) > 0 such that for every p ∈ Rn with ‖p− l‖ < δ we have Y (p, C) ⊂
Y (l, C) + εB1, and if p ∈ TC with ‖p− l‖ < δ, then ‖y(p, C)− y(l, C)‖ ≤ ε.
Now, for m ∈ N such that 1

m < δ, we use that supp θm(·−lm) ⊂ B 1
m

(lm) ⊂ B1

and that it generates a probability measure αm ∈ SM:

‖Stαm(C)− y(l, C)‖

= ‖
∫
B1

St(Y (p, C))θm(p− lm) dµ(p)− y(l, C) ·
∫
B1

θm(p− lm) dµ(p)‖

≤
∫

B1∩TC

‖y(p, C)− y(l, C)‖ · θm(p− lm) dµ(p)

≤
∫

B 1
m

(lm)∩TC

ε · θm(p− lm) dµ(p) = ε.

ut
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4 Generalized Steiner points and Arithmetic Set Operations

We start with some properties of GS-points.

Lemma 4.1 Let C,D ∈ C(Rn), α, β ∈Msp, R be an orthogonal matrix, and
let λ, ν ≥ 0. Then,

Stλα+νβ(C) = λ Stα(C) + ν Stβ(C), if λ + ν = 1, (4.1)
Stα(λC + νD) = λ Stα(C) + ν Stα(D), (4.2)

Stα(RC) = R Steα(C). (4.3)

Hereby, α̃(B) = α(R ·B) for a measurable subset B ∈ B in (4.3). If α ∈ AM
is concentrated in l, α̃ ∈ AM is concentrated in Rtl.

Proof The equality (4.1) follows from the definition of convex combination of
measures and simple properties of integrals. (4.2) is shown in [14, Remarks
after Theorem 3.6] and for atomic measures it is a consequence of (2.3) and
the fact that Y (l, λC + νD) = λY (l, C) + νY (l,D) for λ, ν ≥ 0.

Let R be an orthogonal matrix. For a measure α ∈ SM with density
function θ(·), we substitute z = Rtp and use the obvious relation Y (p, RC) =
RY (Rtp, C), the equality St(RB) = R St(B) in (2.4) and |det Rt| = 1:

Stα(RC) =
∫
B1

St(Y (p, RC))θ(p) dµ(p) =
∫
B1

R St(Y (Rtp, C))θ(RRtp) dµ(p)

= R

∫
B1

St(Y (z, C))θ̃(z)|det Rt| dµ(z) = R Steα(C),

where θ̃(z) = θ(Rz) and α̃ ∈ SM is the corresponding measure.
If α ∈ AM concentrated in l ∈ Sn−1, then α̃ ∈ AM is concentrated in Rtl
and

Stα(RC) = St(Y (l, RC)) = St(RY (Rtl, C)) = R St(Y (Rtl, C)) = R Steα(C).

The last equalities may be easily adapted for α ∈ co(AM). ut

Remark 4.2 For α ∈ SM, (4.2) is known [14, Remarks after Theorem 3.6].
Note that if λ or ν are negative, equation (4.2) holds only for the Steiner
point, and may be invalid for a generalized one. In particular, from (4.3)
follows that Stα(−A) = −Steα(A), where α̃ is the “reflection” of α with
respect to the origin, i.e. α̃(B) = α(−B) for any measurable set B ⊂ B1.
It is easy to prove (4.3) for any congruence transformation, showing that
α̃(B) = α(RB) for any set B ∈ B.

The following example shows that the equation (4.2) is not true for atomic
measures with the definition (2.6) of GS-points. This explains, why we choose
the Steiner point of the supporting faces in Definition 3.1 instead of the
minimal norm element.
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Example 4.3 Let λ = ν = 1, C := co {
(
0
0

)
,
(
2
0

)
}, D := co {

(−3
0

)
,
(−1

0

)
} and

α ∈ AM be concentrated in l =
(
0
1

)
. Then, C + D = co {

(−3
0

)
,
(
1
0

)
} and

m(Y (l, C))+m(Y (l,D)) =
(

0
0

)
+

(
−1
0

)
=

(
−1
0

)
6=

(
0
0

)
= m(Y (l, C +D))

which would lead to inequality in (4.2) for S̃tα(·), in contrast to Stα(·) with

St(Y (l, C)) + St(Y (l,D)) =
(

1
0

)
+

(
−2
0

)
=

(
−1
0

)
= St(Y (l, C + D)).

The following GS-representations of Minkowski operations on sets are
straightforward consequences of Corollary 3.5 and Lemma 4.1, or follow easily
from (3.3) and [14] for SM.

Corollary 4.4 Let C,D ∈ C(Rn) and λ, ν ≥ 0. Then,

λC + νD =


co

⋃
α∈AM

{λ Stα(C) + ν Stα(D)}, if Msp = AM,

⋃
α∈Msp

{λ Stα(C) + ν Stα(D)}, if Msp ∈ {SM, co(AM)}.

The next theorems provide explicit forms of the Demyanov difference of
two sets in terms of their GS-representations.

Theorem 4.5 Let C,D ∈ C(Rn). Then,

C −· D =
⋃

α∈SM
{Stα(C)− Stα(D)}. (4.4)

Proof Denote U :=
⋃

α∈SM
{Stα(C) − Stα(D)}. The convexity of the set U

follows easily from the convexity of SM and (4.1). We prove now that
C −· D = U .
“⊂”: Let y(l, C)− y(l, C) ∈ C −· D with l ∈ Sn−1 ∩ TC ∩ TD. By Lemma 3.2,
y(l, C) − y(l, D) = Stα(C) − Stα(D) with α ∈ AM concentrated in such l.
According to Lemma 3.8, there exists a normal Dirac sequence (θm(·))m∈N ⊂
C1(B1) with corresponding measures (αm)m∈N ⊂ SM and

Stαm
(C) −−−−→

m→∞
y(l, C), Stαm

(D) −−−−→
m→∞

y(l,D).

Since Stαm(C)− Stαm(D) ∈ U for every m ∈ N, we have

y(l, C)− y(l, D) = lim
m→∞

(Stαm(C)− Stαm(D)) ∈ U.

Taking the closed convex hull on both sides over all considered l, we complete
the proof of this inclusion.
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“⊃”: Let Stα(C) − Stα(D) ∈ U with α ∈ SM and density function θ(·) ∈
C1(B1). Then,

Stα(C)− Stα(D) =
∫
B1

(St(Y (p, C))− St(Y (p, D)))θ(p) dµ(p)

=
∫

B1∩TC∩TD

(y(p, C)− y(p, D))θ(p) dµ(p).

By the convexity and compactness of C −· D we have

Stα(C)− Stα(D) ∈ C −· D, (4.5)

since y(p, C) − y(p, D) ∈ C −· D and C −· D equals the Aumann integral∫
B1

θ(p)(C −· D)dµ(p). Taking the closed union over all α ∈ SM in (4.5)
completes the proof. ut

In the next theorem we replace the set SM in (4.4) by co(AM).

Theorem 4.6 Let C,D ∈ C(Rn). Then,

C −· D =
⋃

α∈co(AM)

{Stα(C)− Stα(D)} = co
⋃

α∈AM
{Stα(C)− Stα(D)}. (4.6)

Proof Denote

U :=
⋃

α∈co(AM)

{Stα(C)− Stα(D)}, (4.7)

V := co
⋃

l∈Sn−1

{St(Y (l, C))− St(Y (l,D))}. (4.8)

The convexity of the set U follows from the convexity of co(AM).
First we show that V = C −· D.
The inclusion “⊃” is obvious. To prove “⊂”, we use Theorem 4.5 for the
sets Y (l, C) and Y (l,D) and the normalized Lebesgue measure, thus we get
St(Y (l, C)) − St(Y (l,D)) ∈ Y (l, C)−· Y (l,D). Since Y (l, C)−· Y (l,D) is a
subset of C −· D ([15, Lemma 3.2]), it follows that V = C −· D.

Now, we show that U = V .
“⊃” follows from Lemma 3.2 and the convexity of U .
“⊂”: For Stα(C)− Stα(D) ∈ U with α ∈ AM concentrated in l ∈ Sn−1,

Stα(C)− Stα(D) = St(Y (l, C))− St(Y (l, D)) ∈ V.

For a convex combination α =
∑k

i=1 λiαi ∈ co(AM) we have by Lemma 3.2

Stα(C)− Stα(D) =
k∑

i=1

λi(Stαi(C)− Stαi(D)) ∈ co(V ) = V.

Taking the union over all α ∈ co(AM) and the closure of both sides, we get
the needed inclusion. ut
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Theorem 4.6 also motivates the use of the Steiner point instead of the
minimal norm element in Definition 3.1. The following example shows that
the equality (4.6) is not true with definition (2.6) for GS-points with α ∈
AM.

Example 4.7 Take C := co {
(
0
0

)
,
(
2
0

)
}, D := co {

(−3
0

)
,
(−1

0

)
}.

Clearly, C −· D = {
(
3
0

)
} and

co
⋃

α∈AM
{S̃tα(Y (l, C))− S̃tα(Y (l,D))} = co {

(
1
0

)
,

(
3
0

)
} ⊃
6=

C −· D.

The following representations of the Demyanov distance on C(Rn) hold
due to Theorems 4.5 and 4.6.

Corollary 4.8 Let C,D ∈ C(Rn). Then,

dD(C,D) = sup
α∈SM

‖Stα(C)− Stα(D)‖ = sup
α∈co(AM)

‖Stα(C)− Stα(D)‖

= sup
α∈AM

‖Stα(C)− Stα(D)‖ = sup
l∈Sn−1

‖St(Y (l, C))− St(Y (l,D))‖.

Proof The first two equalities are due to Theorems 4.5 and 4.6 as well as
(2.1). For the last two equalities, we note that due to Lemma 3.2 and the
triangle inequality of the norm,

sup
α∈AM

‖Stα(C)− Stα(D)‖ = sup
α∈co(AM)

‖Stα(C)− Stα(D)‖. (4.9)

Again, Lemma 3.2 yields Stα(C) = St(Y (l, C)) for α ∈ AM concentrated in
l ∈ Sn−1 which completes the proof. ut

In the next section we consider set-valued maps defined on a finite in-
terval I = [t0, T ] with images in C(Rn). By (3.3) and (3.6) such maps have
representations by GS-selections with smooth measures resp. convex com-
binations of atomic measures. For computational purposes a finite number
of directions GM = {l1, . . . , lM} ⊂ Sn−1 ∩ TC approximating Sn−1 ∩ TC are
chosen and the convex hull of the corresponding atomic measures are used
to generate finitely many GS-selections.

5 Regularity Properties of GS-Selections

In this section, we aim to characterize regularity properties of set-valued
maps by the same properties possessed uniformly by a family of GS-selections
obtained by atomic and smooth measures.

Given a measurable set-valued map F (·) with images in C(Rn) on I and
a probability measure α ∈ Msp, a GS-selection of this map is defined by
t 7→ Stα(F (t)), i.e. the GS-point of the image F (t), t ∈ I.
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The equations (3.3) and (3.4) immediately imply the equalities

F (t) =
⋃

α∈SM
{Stα(F (t))} =

⋃
m∈N

{Stαm(F (t))} (t ∈ I) (5.1)

with (αm)m∈N ⊂ SM. The latter equality forms a Castaing representation
of the set-valued map (cf. [12, Theorem 3.4]).

In [14, 12] results of the following type were obtained: If the set-valued
map F : I → C(Rn) has a regularity property (e.g. continuous, Lipschitz,
pseudo-Lipschitz and semi-differentiable) w.r.t. Hausdorff distance, then each
GS-selection is regular, but this regularity is not necessarily uniform in the
family of all GS-selections.

Recall that F (·) is Lipschitz with respect to the Demyanov metric (D-
Lipschitz) on the domain I with a constant L, if

dD(F (s), F (t)) ≤ L · |s− t|, s, t ∈ I. (5.2)

The following equivalence between the D-Lipschitz continuity of a multimap
and the uniform Lipschitz continuity of its GS-selections follows directly from
Corollary 4.8.

Proposition 5.1 The mapping F : I → C(Rn) is D-Lipschitz with a con-
stant L, if and only if the GS-selections (Stα(F (·)))α∈Msp are uniformly Lip-
schitz with the same constant L, i.e.

sup
α∈Msp

‖Stα(F (s))− Stα(F (t))‖ ≤ L · |s− t|, s, t ∈ I. (5.3)

In [14, Theorem 3.6] and [12, Proposition 2.4] it is shown that the Lipschitz
constant L̃ of a GS-selection of a Lipschitz (w.r.t. the Hausdorff metric)
multifunction, generated by a measure α ∈ SM, equals

L̃ = n · max
p∈Sn−1

θ(p) + max
p∈B1

‖∇θ(p)‖

and depends linearly on the sup-norms of the density θ(·) of α and of the
gradient of θ(·). If the multifunction is Lipschitz w.r.t. the Demyanov metric,
a uniform Lipschitz constant for its GS-selections in (5.1) (i.e. a uniform
bounded derivative of the corresponding densities) exists.

Moreover, the D-continuity of a multifunction F (·) is equivalent to the
uniform continuity of the family of GS-selections (Stα(F (·)))α∈Msp .

Note that D-continuity is stronger than Hausdorff-continuity. The next
example modifiying Example [15, Example 3.1] presents a multifunction
which is Lipschitz continuous with respect to the Hausdorff metric, but not
with respect to the Demyanov metric and has discontinuous GS-selections
generated by atomic measures.

Example 5.2 Consider I = [−π
2 , 3π

2 ] and define the set-valued map F : I →
C(R2) with F (t) = co {

(
0
0

)
,
(
cos(t)
sin(t)

)
}. Consider the atomic measure α[l] ∈ AM
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concentrated in l =
(
1
0

)
. Then, Lemma 3.2 shows:

Stα[l](F (t)) =


(
cos(t)
sin(t)

)
, t ∈ (−π

2 , π
2 ),

1
2

(
0
1

)
, t = π

2 ,(
0
0

)
, t ∈ (π

2 , 3π
2 ),

1
2

(
0
−1

)
, t = −π

2 , 3π
2 .

Clearly, Stα[l](F (·)) is discontinuous, and the same is true for any measure
α ∈ AM.

Definition 5.3 Consider I = [t0, T ] and a multimap F : I → C(Rn). F has
bounded D-variation, if there exists a constant V < ∞ such that for any
partition t0 < t1 < ... < tN = T , N ∈ N,

N−1∑
i=0

dD(F (ti+1), F (ti)) ≤ V.

The minimal of such numbers V is called the D-variation of F and denoted
by

∨D
I F .

For the family of measures Msp we say that F (·) has bounded Msp-
variation on I, if there exists a constant V < ∞ such that for all partitions
t0 < t1 < ... < tN = T with N ∈ N,

sup
α∈Msp

N−1∑
i=0

‖Stα(F (ti+1))− Stα(F (ti))‖ ≤ V.

The minimal of such constants V will be called Msp-variation of F and will
be denoted by

∨Msp
I F .

Note that, by the convexity, the above variation will not change, if one
takes the set AM instead of the index set co(AM). By Lemma 3.2,

AM∨
I

F = sup
l∈Sn−1

t0<t1<...<tN=T
N∈N

N−1∑
i=0

‖St(Y (l, F (ti+1)))− St(Y (l, F (ti)))‖.

For the purpose of numerical set-valued integration, the weaker Msp-
variation is applied instead of the D-variation.

Proposition 5.4 If F : I → C(Rn), then

AM∨
I

F =
co(AM)∨

I

F ≤
D∨
I

F,

SM∨
I

F ≤
D∨
I

F.
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Proof Clearly,
∨AM

I F ≤
∨co(AM)

I F . Take a convex combination of measures
α =

∑k
j=1 λjαj , αj ∈ AM. Then, for an arbitrary partition (ti)i=0,...,N of I

we have by (4.1) and the convexity of the norm

N−1∑
i=0

‖Stα(F (ti+1))− Stα(F (ti))‖

≤
k∑

j=1

λj

N−1∑
i=0

‖Stαj
(F (ti+1))− Stαj

(F (ti))‖

≤ sup
α∈AM

N−1∑
i=0

‖Stα(F (ti+1))− Stα(F (ti))‖,

which shows that
∨co(AM)

I F ≤
∨AM

I F .
On the other hand, Corollary 4.8 shows ‖Stα(F (ti+1)) − Stα(F (ti))‖ ≤

dD(F (ti+1), F (ti)) for α ∈Msp, i = 0, . . . , N−1. With this fact the inequality∨Msp
I F ≤

∨D
I F follows easily.

We conjecture that the SM-variation of F equals its AM-variation, but
this is still an open question. At least, the following criterion is obvious.

Corollary 5.5 If F : I → C(Rn) has bounded D-variation, then F (·) has
bounded AM-variation and bounded SM-variation.

6 Approximate Set-Valued Integration

The commutation between the classical Steiner selection and the integral
operator is well-known (cf. [20]) and is based on the well-known formula of
the support function of the Aumann integral [1]:

δ∗(p,

∫
I

F (t) )dt =
∫
I

δ∗(p, F (t)) dt, p ∈ Rn. (6.1)

Let us recall some classical notions for a set-valued map F : I → C(Rn). It
is called measurable, if the inverse image of each open set is a measurable set
(cf. [4, Definition 8.1.1]). In [23, Corollary 2.5] it is proved that a measurable
map can be approximated by measurable, simple maps. Furthermore, F (·)
is integrably bounded, if ‖F (·)‖ is bounded by an integrable function (cf. [4,
Section 8.6]).

Proposition 6.1 ([20, Proposition 4.5]) Let F : I → C(Rn) be measur-
able and integrably bounded. Then,

St(
∫
I

F (t) dt) =
∫
I

St(F (t)) dt.
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We will provide in this section generalizations of this commutation to
GS-selections w.r.t. smooth and atomic measures.

Proposition 6.2 Let F : I → C(Rn) be measurable and integrably bounded
and α ∈ SM. Then,

Stα(
∫
I

F (t) dt) =
∫
I

Stα(F (t)) dt.

Proof For α ∈ SM, Stα(F (·)) is integrable as a composition of the Lipschitz
continuous Stα(·) (cf. [14, Theorem 3.6]) and the measurable and integrably
bounded F (·) (cf. [4, Theorem 8.2.8]). Denote C :=

∫
I
F (t)dt ∈ C(Rn). It

follows from [14, Theorem 3.6] and Lemma 3.2 that

Stα(C) =
1
Vn

( ∫
Sn−1

p · δ∗(p, C)θ(p) ω(dp)−
∫
B1

δ∗(p, C)∇θ(p) dp
)

(6.2)

with ω(·) being the Lebesgue surface measure on Sn−1. Replacing δ∗(p, C) by
(6.1) in the last equation, and using Fubini’s theorem and (6.2) for Stα(F (t)),
we get

Stα(C) =
∫
I

1
Vn

( ∫
Sn−1

p · δ∗(p, F (t))θ(p) ω(dp)−
∫
B1

δ∗(p, F (t))∇θ(p) dp
)

dt

=
∫
I

Stα(F (t)) dt.

ut

For later use, we prove that the supporting face of the Aumann integral
is the Aumann integral of the supporting face of the integrand in the same
direction l.

Proposition 6.3 Let F : I ⇒ Rn be measurable and integrably bounded with
images in C(Rn) and let l ∈ Sn−1. Then, Y (l, F (·)) is measurable, integrably
bounded and fulfills

Y (l,
∫
I

F (t) dt) =
∫
I

Y (l, F (t)) dt.

Proof First of all, Y (l, F (·)) has images in C(Rn) and is integrably bounded
by the same function as F (·) itself. Since Y (l, F (·)) = argmaxx∈F (t)〈l, x〉 is
the marginal map of f(x) = 〈l, x〉, it follows that Y (l, F (·)) is measurable by
[4, Theorem 8.2.11].
“⊂”: Let z ∈ Y (l,

∫
I
F (t)dt). Then, z ∈

∫
I
F (t)dt and

〈l, z〉 = δ∗(l,
∫
I

F (t) dt) =
∫
I

δ∗(l, F (t)) dt.
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From the definition of the Aumann integral, an integrable selection f(·) of
F (·) must exist with z =

∫
I
f(t)dt. Assume that there exists a measurable

subset J ⊂ I with Lebesgue measure greater 0 and f(t) /∈ Y (l, F (t)) on J .
Then,∫

I

δ∗(l, F (t)) dt = 〈l, z〉 =
∫
I

〈l, f(t)〉 dt

<

∫
I\J

δ∗(l, F (t)) dt +
∫
J

δ∗(l, F (t)) dt =
∫
I

δ∗(l, F (t)) dt

which is a contradiction. Hence, f(t) ∈ Y (l, F (t)) for almost every t ∈ I and
thus, z ∈

∫
I
Y (l, F (t))dt.

“⊃”: Let g(·) be an integrable selection of Y (l, F (·)). Then,

〈l, g(t)〉 = δ∗(l, F (t)) (a.e. in I),

〈l,
∫
I

g(t) dt〉 =
∫
I

〈l, g(t)〉 dt =
∫
I

δ∗(l, F (t)) dt = δ∗(l,
∫
I

F (t) dt).

Since g(·) is also an integrable selection of F (·), we have from above that∫
I

g(t) dt ∈ Y (l,
∫
I

F (t) dt).

ut

The following proposition is the generalization of Proposition 6.1 to GS-
selections for (convex combinations of) atomic measures.

Proposition 6.4 Let F : I → C(Rn) be measurable and integrably bounded
and α = α[l] ∈ AM, l ∈ Sn−1, or α ∈ co(AM). Then,

Stα(
∫
I

F (t) dt) =
∫
I

Stα(F (t)) dt.

Proof Proposition 6.3 shows that Y (l, F (·)) is measurable and integrably
bounded with images in C(Rn). By Proposition 6.1,

St(
∫
I

Y (l, F (t)) dt) =
∫
I

St(Y (l, F (t))) dt.

Applying once more Proposition 6.3 we arrive at

St(
∫
I

Y (l, F (t)) dt) = St(Y (l,
∫
I

F (t) dt)).
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Lemma 3.2 shows that for α = α[l] ∈ AM

Stα[l](
∫
I

F (t) dt) = St(Y (l,
∫
I

F (t) dt))

=
∫
I

St(Y (l, F (t))) dt =
∫
I

Stα[l](F (t)) dt.

The equality for α ∈ co(AM) is obvious. ut

The last propositions and (3.3) yield the following GS-representation of
the Aumann integral.

Corollary 6.5 Let F : I → C(Rn) be measurable and integrably bounded.
Then,

∫
I

F (t) dt =


co

⋃
α∈AM

{
∫
I

Stα(F (t)) dt} for Msp = AM,⋃
α∈Msp

{
∫
I

Stα(F (t)) dt} for Msp = co(AM),SM.

In order to give error estimates for the approximation of the integral∫
I
F (t)dt by Riemann sums, we first study a property for the Demyanov

distance and then a convergence result with the D-variation of F .

Proposition 6.6 Let F : I → C(Rn) be bounded, measurable and has bound-
ed Msp-variation. Then,

‖Stα(
∫
I

F (t) dt)− h

N−1∑
i=0

Stα(F (ti))‖ ≤ h

Msp∨
I

F

for N ∈ N, h = T−t0
N .

Proof The proof is straight forward and uses Propositions 6.2 and 6.4:

∆ :=‖Stα(
∫
I

F (t) dt)− h

N−1∑
i=0

Stα(F (ti))‖

=‖
N−1∑
i=0

Stα(
∫

[ti,ti+1]

F (t) dt)−
N−1∑
i=0

h · Stα(F (ti))dt‖

≤
N−1∑
i=0

‖
∫

[ti,ti+1]

(Stα(F (t))− Stα(F (ti))) dt‖
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The estimations

‖
∫

[ti,ti+1]

(Stα(F (t))− Stα(F (ti))) dt‖

≤
∫

[ti,ti+1]

‖Stα(F (t))− Stα(F (ti))dt‖ dt ≤
∫

[ti,ti+1]

∨
[ti,t]

Stα(F (·)) dt

≤
∫

[ti,ti+1]

∨
[ti,ti+1]

Stα(F (·)) dt = h
∨

[ti,ti+1]

Stα(F (·))

show

∆ ≤ h

N−1∑
i=0

∨
[ti,ti+1]

Stα(F (·)) = h
∨
I

Stα(F (·)).

ut

Remark 6.7 Let F,G : I → C(Rn) be measurable and integrably bounded
and Ci, Di ∈ C(Rn), i = 1, . . . , k. Then,

dD(
k∑

i=1

Ci,

k∑
i=1

Di) ≤
k∑

i=1

dD(Ci, Di) (cf. [15, Lemma 6.2]),

dD(
∫
I

F (t) dt,

∫
I

G(t) dt) ≤
∫
I

dD(F (t), G(t)) dt,

where it is easy to check that dD(F (·), G(·)) is integrable.

Taking the supremum over α ∈Msp in Proposition 6.6 or repeat the idea
of the proof and use the estimations of Remark 6.7, we obtain the following
result in view of Corollary 4.8.

Corollary 6.8 If F : I → C(Rn) has bounded Msp-variation, then,

dD(
∫
I

F (t) dt, h

N−1∑
i=0

F (ti)) ≤ h

Msp∨
I

F ≤
D∨
I

F.

The last two estimates are analogous to the estimate obtained in [5, Ko-
rollar 1.3.5] and [17] in terms of the Hausdorff distance, supposing that F
has bounded dH-variation. Please notice that here we obtain an estimate in
the stronger Demyanov metric under the stronger condition on the variation.
One advantage is that Corollary 6.5 shows that the Aumann integral can be
densely represented with the help of GS-selections (by smooth resp. convex
combinations of atomic measures). Hence, the set-valued approximation of
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the Aumann integral is reduced to the approximation of the pointwise inte-
grals of the GS-selections. Moreover, Proposition 6.6 and Corollary 4.8 imply
the uniform convergence of

h

N−1∑
i=0

Stα(F (ti)) −−−−→
N 7→∞

∫
I

Stα(F (t)) dt

in α ∈ Msp, if F (·) has bounded D-variation or (slightly weaker) bounded
Msp-variation. Thus, the integrals of piecewise constant approximations of
GS-selections of F with measures in Msp approximate the integral of the
GS-selections of F of order 1 uniformly in Msp.

7 Conclusions

Generalized Steiner points are a proper tool for the representation of convex
compact sets, because of the arithmetic and metric properties 1.–3. (cf. the
introduction). Moreover, the differences of GS-points corresponding to the
same measure generate a dense representation of the Demyanov difference
and the supremum norm of these differences yields the Demyanov distance.
In a forthcoming paper, we will study an embedding of the cone of the convex,
compact subsets in Rn into a linear metric space with the help of the GS-
points, in the spirit of [26, 22, 6, 7].

Further research will also be directed towards the study of regularity
and approximations of set-valued maps in terms of their GS-selections. We
have demonstrated here how this approach works for the notions of Lipschitz
continuity and bounded variation of a multifunction, and for one numerical
set-valued quadrature method.
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Mathématiques, 1985. 42 pp.

29. R. Schneider. On Steiner points of convex bodies. Israel J. Math., 9:241–249,
1971.

30. R. Schneider. Convex Bodies: The Brunn-Minkowski Theory, volume 44 of
Encyclopedia of Mathematics and Applications. Cambridge University Press,



Integration and Regularity of Set-Val. Maps Represented by GS-Points 23

Cambridge, 1993.
31. G. C. Shephard. A uniqueness theorem for the Steiner point of a convex region.

J. London Math. Soc., 43:439–444, 1966.
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