URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-4600-5
Titelangaben
Dumpert, Florian:
Statistische Eigenschaften lokalisierter maschineller Lernverfahren.
Bayreuth
,
2020
. - ix, 81 S.
(
Dissertation,
2020
, Universität Bayreuth, Fakultät für Mathematik, Physik und Informatik)
Volltext
|
|||||||||
Download (2MB)
|
Angaben zu Projekten
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
---|
Abstract
Neben anderen Methoden des maschinellen Lernens spielen Support Vector Machines (SVMs) heute in vielen Wissenschaftsbereichen eine wichtige Rolle. In den letzten zwei Jahrzehnten wurde beträchtlich im Bereich statistischer Eigenschaften und der Berechenbarkeit von Support Vector Machines und verwandten kernbasierten Methoden geforscht. Auf der einen Seite ist man aus statistischer Sicht an der Konsistenz und Robustheit der Methode interessiert. Auf der anderen Seite, aus Sicht der Berechenbarkeit, ist man an einer Methode interessiert, die mit vielen Beobachtungen und vielen erklärenden Variablen umgehen kann. Da SVMs viel Rechenleistung und Speicherkapazität benötigen, wurden verschiedene Möglichkeiten zur Handhabung großer Datensätze vorgeschlagen. Eine davon, die als Regionalisierung bezeichnet wird, teilt den Raum der erklärenden Variablen datengesteuert in möglicherweise überlappende Bereiche auf und definiert den Prädiktor durch das Zusammenspiel lokal erlernter Support Vector Machines. Diese Arbeit zeigt, dass ein so erlernter Prädiktor Konsistenz und Robustheitseigenschaften unter Annahmen bewahrt, die vom Anwender dieser Methode geprüft werden können.
Abstract in weiterer Sprache
Among different machine learning methods, support vector machines (SVMs) play an important role in many fields of science nowadays. A lot of research about statistical and computational properties of support vector machines and related kernel methods has been done during the last two decades up to now. On the one hand, from a statistical point of view, one is interested in consistency and robustness of the method. On the other hand, from a computational point of view, one is interested in a method that can deal with many observations and many features. As SVMs need a lot of computing power and storage capacity, different ways to handle big data sets were proposed. One of them, which is called regionalization, divides the space of the declaring variables into possibly overlapping regions in a data driven way and defines the output predicting function by composing locally learnt support vector machines. This thesis shows that a predictor learnt in this way conserves consistency and robustness results under assumptions that can be checked by the user of this method.