Titelangaben
Heinlein, Daniel ; Kiermaier, Michael ; Kurz, Sascha ; Wassermann, Alfred:
A subspace code of size 333 in the setting of a binary q-analog of the Fano plane.
Bayreuth
,
2019
. - 18 S.
Dies ist die aktuelle Version des Eintrags.
Volltext
|
|||||||||
Download (411kB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Ganzzahlige Optimierungsmodelle für Subspace Codes und endliche Geometrie Ohne Angabe |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
We show that there is a binary subspace code of constant dimension 3 in ambient dimension 7, having minimum distance 4 and cardinality 333,, which improves the previous best known lower bound of 329. Moreover, if a code with these parameters has at least 333 elements, its automorphism group is in one of 31 conjugacy classes. This is achieved by a more general technique for an exhaustive search in a finite group that does not depend on the enumeration of all subgroups.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
A subspace code of size 333 in the setting of a binary q-analog of the Fano plane. (deposited 28 Aug 2017 05:31)
-
A subspace code of size 333 in the setting of a binary q-analog of the Fano plane. (deposited 03 Mai 2018 06:50)
- A subspace code of size 333 in the setting of a binary q-analog of the Fano plane. (deposited 17 Jan 2019 09:55) [Aktuelle Anzeige]
-
A subspace code of size 333 in the setting of a binary q-analog of the Fano plane. (deposited 03 Mai 2018 06:50)