Title data
Boccia, Andrea ; Grüne, Lars ; Worthmann, Karl:
Stability and feasibility of state-constrained linear MPC without stabilizing terminal constraints.
Department of Mathematics, University of Bayreuth
Bayreuth
,
2014
. - 8 S.
![]() |
|
||||||||
Download (397kB)
|
Project information
Project title: |
|
||||||
---|---|---|---|---|---|---|---|
Project financing: |
Andere European Union "FP7-People-ITN" programme; Deutsche Forschungsgemeinschaft |
Abstract
This paper is concerned with stability and recursive feasibility of constrained linear receding horizon control schemes without terminal constraints and costs. Particular attention is paid to characterize the basin of attraction X of the asymptotically stable equilibrium. For stabilizable linear systems with quadratic costs and convex constraints we show that any compact subset of the interior of the viability kernel is contained in X for sufficiently large optimization horizon N. An analysis at the boundary of the viability kernel provides a connection between the growth of the infinite horizon optimal value function and stationarity of the feasible sets. Several examples are provided which illustrate the results obtained.
Further data
Item Type: | Preprint, postprint |
---|---|
Keywords: | model predictive control; stability; recursive feasibility |
DDC Subjects: | 500 Science > 510 Mathematics |
Institutions of the University: | Faculties Faculties > Faculty of Mathematics, Physics und Computer Science Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics V (Applied Mathematics) > Chair Mathematics V (Applied Mathematics) - Univ.-Prof. Dr. Lars Grüne Profile Fields Profile Fields > Advanced Fields Profile Fields > Advanced Fields > Nonlinear Dynamics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics V (Applied Mathematics) |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-1903-7 |
Date Deposited: | 13 Mar 2015 09:31 |
Last Modified: | 16 Mar 2015 09:29 |
URI: | https://epub.uni-bayreuth.de/id/eprint/1903 |