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Abstract— This paper is concerned with stability and recur-
sive feasibility of constrained linear receding horizon control
schemes without terminal constraints and costs. Particular
attention is paid to characterize the basin of attraction S of
the asymptotically stable equilibrium. For stabilizable linear
systems with quadratic costs and convex constraints we show
that any compact subset of the interior of the viability kernel
is contained in S for sufficiently large optimization horizon N .
An analysis at the boundary of the viability kernel provides a
connection between the growth of the infinite horizon optimal
value function and stationarity of the feasible sets. Several
examples are provided which illustrate the results obtained.

I. INTRODUCTION

Model predictive control (MPC) is an approach to control
system design based on solving, at each control update time,
an optimal control problem. In this paper we study stability
and recursive feasibility of linear MPC schemes without sta-
bilizing terminal constraints or costs but imposing state and
control constraints. In [17] stability and recursive feasibility
is shown for controllable linear quadratic systems with mixed
linear state and control constraints on any compact subset of
I∞, the domain of the infinite horizon optimal value function
(which is shown to coincide with the points that can be
steered to the origin in finite time).

The present paper presents general stability and feasibil-
ity results for MPC without terminal constraints and costs
applied to stabilizable linear systems with quadratic costs
and general convex state and control constraints. Stabilizable
linear systems are also considered in [19] but in an uncon-
strained framework. We here show the same results of [17]
adapted to our setting with a particular emphasis on analysing
the basin of attraction for a given prediction horizon N .
We show that stabilizability implies a controllability type
condition employed elsewhere in the literature, generally for
nonlinear systems, see [5], [14], [8], [20], [9], [12], [11],
[21]. This enables us to conclude a general stability and
feasibility result.
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In order to analyse the basin of attraction of the MPC
controller, we analyse the growth of the value functions and
behaviour of the system at the boundary of the viability
kernel F∞ as well as the continuity of V∞, results which
constitute contributions at their own right. Adapting a tech-
nique from [6] we show that the infinite horizon optimal
value function V∞ is finite on intF∞. A particularly nice
case appears when V∞ is finite on the whole viability kernel
F∞. We show that this property implies stationarity of the
feasible sets in the sense of [15, Chapter 5].

The paper is organized as follows. After introducing our
notation, we describe the setting in Section II. Section III
then contains the main asymptotic stability and feasibility
results on level sets . A description of the basin of attraction
S follows in Section IV. Our results in this section include
some well known facts on viability kernels for which we
provide sketches of the proofs for convenience of the reader.

Results on stationarity of the feasible sets are presented
in Section V while Section VI and the Appendix deal
with continuity of the value functions. Finally we present
a numeric example in Section VII and conclusions can be
found in Section VIII.

NOTATION

With R and N we denote the real and natural numbers,
respectively. N0 := N ∪ {0} and the non-negative real
numbers are indicated by R≥0. The Euclidean norm in
Rn is written as | · | while given a matrix M ∈ Rn×m,
‖M‖ := sup|x|≤1 |Mx|. B denotes the closed unit ball in
Rn. Given a set S ⊂ Rn, S denotes its closure, intS its
interior and ∂S := S \ intS its boundary. Furthermore,
a continuous function η : R≥0 → R≥0 is said to be of
class K if it is strictly increasing and satisfies η(0) = 0. If
η ∈ K is also unbounded, η is called a class K∞-function.
A function β : R≥0 × R≥0 → R≥0 is called KL-function
if it is continuous, satisfies β(·, t) ∈ K∞, t ∈ R≥0, is
strictly decreasing in its second argument for all r > 0, and
limt→∞ β(r, t) = 0 holds.

II. MODEL PREDICTIVE CONTROL

In this paper asymptotic stability of the discrete time linear
constrained system

x+ = Ax+Bu, (x, u) ∈ E (1)

with respect to the origin is investigated. The data for (1)
comprises matrices A ∈ Rn×n, B ∈ Rn×m and a set
E ⊂ Rn ×Rm. The successor state x+ is determined by the
dynamics (A,B) in dependence of the current state x ∈ Rn



and the control input u ∈ Rm. The state trajectory emanating
from initial state x0 and generated by the control sequence
u = (u(k))k∈N0 is denoted by xu(k;x0), k ∈ N0. Here the
trajectory xu is defined iteratively by

xu(k+1;x0) = Axu(k;x0)+Bu(k) and xu(0;x0) = x0.

For a given set E , the set of admissible states is given by
the projection of the set E onto the state space Rn, i.e.

X := projRn(E) = {x ∈ Rn : ∃ u ∈ Rm s.t. (x, u) ∈ E}.

Furthermore, for a given admissible state x ∈ X , the control
constraints can be represented by

U(x) := {u ∈ Rm : (x, u) ∈ E}.

The constraints in (1) may equivalently be written as x ∈ X
and u ∈ U(x) and we refer indistinctly to either formulations
depending on our convenience. Two important concepts to
be considered when dealing with constraints are feasibility
and admissibility.

Definition 1 (Admissibility and Feasibility): A sequence
of control values u = (u(0), u(1), . . . , u(N − 1)) is called
admissible for x0 ∈ X and N ∈ N∪ {∞}, if the conditions

(xu(k;x0), u(k)) ∈ E and xu(N ;x0) ∈ X

hold for all k ∈ {0, 1, . . . , N − 1}. The set of all admissible
control sequences of length N is denoted by UN (x0). The
feasible set for a horizon length N ∈ N∪{∞} is defined as

FN := {x ∈ X : UN (x) 6= ∅}. (2)

The set F∞ is also called viability kernel.
Our goal is to find a static state feedback µ : Rn →

Rm which asymptotically stabilizes the system (1) on a set
S ⊆ X containing the origin. This means that for any initial
state x0 ∈ S the closed loop trajectory xµ(k;x0), k ∈ N0,
generated by xµ(0;x0) = x0 and

xµ(k + 1;x0) = Axµ(k;x0) +Bµ(xµ(k;x0))), (3)

remains feasible, i.e., (xµ(k;x0), µ(xµ(k;x0))) ∈ E holds
for all k ∈ N0, and satisfies the estimate

|xµ(k;x0)− x?| ≤ β(|x0 − x?|, k) ∀ k ∈ N0

for some KL-function β. The basic assumption on the data
of (1) needed to prove stability is as follows.

Assumption 1: The constraint set E is convex, compact,
and contains the origin (0, 0) in its interior. Furthermore, the
linear system described by the pair (A,B) is stabilizable.

MPC offers an algorithmic procedure to accomplish the
stabilization task where the feedback values µ(x) are com-
puted by solving optimal control problems. To this end,
quadratic running costs ` : Rn × Rm → R≥0 specified by

`(x, u) := (xT uT )

(
Q N
NT R

)(
x
u

)
(4)

with symmetric matrices Q ∈ Rn×n, R ∈ Rm×m are
defined. The costs ` are assumed to satisfy

`?(x) := inf
u∈Rm

`(x, u) ≥ η|x|2 ∀ x ∈ X (5)

for some η ∈ R>0. This property is, e.g., satisfied if Q > 0
(positive definite), N = 0, and R ≥ 0. The corresponding
cost function JN : Rn × (Rm)N → R≥0 and optimal value
function VN : Rn → R≥0 ∪ {+∞} are given by

JN (x, u) :=

N−1∑
k=0

`(xu(k;x), u(k)),

VN (x) := inf
u∈UN (x)

J(x, u)

for N ∈ N ∪ {∞}, x ∈ X , and u ∈ UN (x) with the
convention VN (x) = +∞ if x /∈ X or UN (x) = ∅.

Fixing a finite prediction horizon (or optimization horizon)
N and setting xµN

(0;x0) := x0, k := 0, the MPC loop is
as follows:

1. Set x = xµN
(k;x0), solve the optimal control problem

minu∈UN (x) JN (x, u)

and denote a respective minimizing control sequence
by u? ∈ UN (x).1

2. Define the MPC feedback value by µN (x) := u?(0).
3. Compute xµN

(k + 1;x0) by (3) with µ = µN , set
k := k + 1 and go to 1.

This iteration yields a closed loop trajectory for the
implicitly defined MPC feedback law µN : X → Rm. A
main obstacle to applicability of the MPC scheme described
above concerns the feasibility of the MPC closed loop at
each time step k, i.e., UN (x) 6= ∅ at stage 1. The problem
could be circumvented by incorporating suitable terminal
constraints and costs in the optimal control problem to be
solved in each MPC step. However, the construction of such
stabilizing constraints might be challenging and can reduce
the operating range of the MPC scheme, cf. [11, Chapter
8] and [16] for detailed discussions. In such cases, MPC
without stabilizing constraints or costs can provide a valid
alternative which is why we analyse this variant in this
paper. Without stabilizing constraints, proving feasibility of
the MPC algorithm in each step and asymptotic stability
of the resulting closed loop poses a considerable challenge.
Ideally we would like to find the maximal set S ⊆ X on
which the MPC feedback law µN asymptotically stabilizes
(1) and the closed loop xµN

(·;x) remains feasible. Such set
S is called basin of attraction. Observe that it is necessarily
a subset of the following set

I∞ := {x ∈ X : ∃u ∈ U∞(x) s.t. lim
k→∞

xu(k;x) = 0}

comprising points x ∈ X that can be feasibly driven (open
loop) to the origin. In order to characterize S we now
introduce the following concepts of invariance. A set C ⊆ X
is said to be (controlled) forward invariant or viable if, for
each x ∈ C, there exists u ∈ U(x) such that x+ ∈ C. Observe
that every forward invariant set C ⊆ X satisfies the inclusion
C ⊆ F∞ and that the set of admissible states X is, in general,

1Whenever UN (x) 6= ∅, existence of a minimizer u? ∈ UN (x)
satisfying JN (x, u?) = VN (x) is assumed in order to avoid technical
difficulties.



much larger than the viability kernel F∞. Methods which
can be used in order to compute invariant sets can be found,
e.g., in [4]. The set C is said to be recursively feasible if it is
forward invariant with respect to the feedback law µN , that
is µN (x) ∈ U(x) and Ax+BµN (x) ∈ C for all x ∈ C.

III. STABILITY ON LEVEL SETS

In this section we show that under Assumption 1 a pre-
diction horizon length can be determined such that recursive
feasibility and asymptotic stability of the MPC scheme
proposed in the previous section is ensured. To this end, first
a local bound on the optimal value function V∞ is deduced
which is then extended to arbitrary level sets. For a given
horizon length N ∈ N ∪ {∞} and a positive constant C the
level set is defined as

V −1N [0, C] := {x ∈ X : VN (x) ≤ C}.

Proposition 2: Let Assumption 1 hold and consider sys-
tem (1) with quadratic running costs as in (4). Then, there
exists a neighbourhood N ⊆ X of the origin and a constant
γ ∈ R>0 such that the following inequality holds

V∞(x) ≤ γ · `?(x) ∀ x ∈ N . (6)
Proof: Since the origin is contained in the interior

of the constraint set E and the pair (A,B) is supposed
to be stabilizable, a neighborhood N of the origin exists
such that an LQR can be applied neglecting the constraints.
Then, the solution P of the algebraic Riccati equation fulfills
V∞(x0) = xT0 Px0 ≤ c|x0|2 ≤ γ · `?(x0) on N with
γ := cη−1 where c is the maximal eigenvalue of P and
η is defined in (5).
Condition (6) is used in the nonlinear MPC literature as a
main assumption to prove stability cf. [20], [11]. It is referred
in the literature as ‘controllability’ assumption. This stems
from the fact that V∞(x) < C is equivalent to the system
being asymptotically controllable to the origin sufficiently
fast, since otherwise (5) would imply V∞(x) =∞.

We next show that Condition (6) can be extended to hold
on arbitrary level sets. This will in turn provide the desired
stability and recursive feasibility properties.

Proposition 3: Let the assumptions of Proposition 2 be
satisfied. Then for any N ∈ N and C ∈ R>0 we have that

VN (x) ≤ β · `?(x) ∀ x ∈ V −1N [0, C],

for some constant β = β(C) independent of N . Furthermore
the constant C can be chosen sufficiently large to satisfy
V −1N [0, C] ⊇ N for N from Proposition 2.

Proof: Since the running costs satisfy (5), existence of
the positive lower bound

M := inf
x∈X \N

`?(x) > 0 (7)

is ensured. Then, for every x ∈ V −1N [0, C]\N , the inequality

VN (x) ≤ C =
C

M
·M ≤ C

M
· `?(x)

holds and the first part of the Proposition is proved since,
when x ∈ N , V∞(x) ≤ γ · `?(x) by Proposition 2. Observe

that the constant β = β(C,M, γ) only depends on the
constant C and on the parameters in Inequality (6) and
Condition (5). Choose C ∈ R>0 to satisfy

sup
x∈N

`?(x) ≤ C/γ. (8)

Such C exists since the costs `(·) are quadratic. Then, since
N is bounded, the last assertion follows directly from

sup
x∈N

VN (x) ≤ γ · sup
x∈N

`?(x) ≤ C.

We are ready to state our stability and feasibility result.
Theorem 4: Consider the same hypotheses and the result-

ing neighbourhood N as in Proposition 2. Take any positive
real number C satisfying (8) and let M be defined as in (7).
In addition, choose N0 ∈ N such that the inequalities

C

(
β − 1

β

)N0−1

< M and 1− αN0
> 0 (9)

hold with β := max{C/M, γ} and αN := β2
(
β−1
β

)N
.

Then, for every N ≥ N0 and every x ∈ V −1N [0, C], we have

VN (Ax+BµN (x)) ≤ VN (x)− (1− αN )`?(x). (10)

In particular, VN (·) is a Lyapunov function on the recursively
feasible set V −1N [0, C] which implies recursive feasibility and
asymptotic stability of the MPC closed loop.

Proof: The proof follows from [5, Theorem 3] which
in turn is based on ideas from [20]. Note that the assumed
quadratic running cost in combination with Condition (5)
imply existence of K∞-functions %1, %2 : R≥0 → R≥0
satisfying %1(‖x‖) ≤ `?(x) ≤ %2(‖x‖) — an assumption
needed in [5].
Observe that our results can be extended to general running
costs if Condition (6) and %1(‖x‖) ≤ `?(x) ≤ %2(‖x‖) are
verified.

IV. THE BASIN OF ATTRACTION

In this section we study the relations between the basin
of attraction S, I∞ and the viability kernel F∞. By their
definitions it is already known that

S ⊆ I∞ ⊆ F∞.

It is interesting to understand under which conditions the
reverse inclusions are also true. In general, without additional
hypotheses, we have strict inclusions (as shown in Example
10). In order to investigate the possibility of equalities, let
us recall the following characterization of the viability kernel
F∞.

Proposition 5: Consider the linear system (1) and let
Assumption 1 be satisfied. Then the viability kernel F∞,
defined in (2), is a compact and convex set containing the
origin in its interior. Furthermore if x ∈ ∂F∞, every feasible
trajectory will remain on the boundary ∂F∞ unless it touches
∂X .

Proof: The claims of this proposition are known results
in the literature especially related to results from viability



theory, c.f. [2]. We provide an elementary proof for com-
pleteness. Since the pair (A,B) is stabilizable, a feedback
law F ∈ Rm×n exists such that %(A+BF ) < 1 holds, i.e. all
eigenvalues of the closed loop given by A+BF are contained
in the interior of the unit circle, cf. [13]. As a consequence,
constants C ≥ 1 and σ ∈ (0, 1) exist such that, for each state
x0 ∈ Rn, the closed loop solution (xF (k;x0))k∈N0

satisfies

|xF (k;x0)| ≤ ‖(A+BF )k‖ |x0| ≤ Cσk|x0| ∀ k ∈ N0.

This shows that |(xF (k;x0), FxF (k;x0))| ≤ Cσk(‖F‖ +
1)|x0| holds. Recall that (0, 0) ∈ int E by hypothesis.
Therefore existence of an ε-ball εB ⊆ E is ensured. Hence,
(xF (k;x0), FxF (k;x0)), k ∈ N0, is admissible, which im-
plies x0 ∈ F∞ for arbitrary x0 ∈ δB with C(‖F‖+1)δ ≤ ε.
This proves that δB ⊂ F∞.

Since F∞ ⊆ X , boundedness of E implies boundedness
of the viability kernel. Hence, in order for compactness to
be proved it is sufficient to show that F∞ = cl{F∞}.

Take any x ∈ cl{F∞}. By definition of closure we can
find points xi ∈ F∞ such that xi → x and by definition
of F∞ we can find admissible controls ui such that Axi +
Bui ∈ F∞ holds for every i ∈ N. Now each pair (xi, ui)
belongs to the compact set E so that extracting a subsequence
if necessary (xi, ui) → (x, u) ∈ E . But then by continuity
Ax+Bu ∈ cl{F∞}. This proves that for every x ∈ cl{F∞},
there exists u ∈ U(x) such that Ax+Bu ∈ cl{F∞}, namely,
cl{F∞} is a forward invariant set. Therefore cl{F∞} ⊆ F∞
which completes the argument since the reverse inclusion is
obvious.

Convexity follows as a straightforward application of the
definitions. Take x1, x2 ∈ F∞ and a convex combination
λx1 + (1 − λ)x2, λ ∈ [0, 1], of them. By definition
there exist u1 ∈ U∞(x1) and u2 ∈ U∞(x2) such that
(xu1(k;x1), u1(k)) ∈ E and (xu2(k;x2), u2(k)) ∈ E for ev-
ery k ∈ N0. The linearity of the dynamics imply equality of
λxu1

(k;x1)+(1−λ)xu2
(k;x2) and xλu1+(1−λ)u2

(k;λx1 +
(1 − λ)x2). Hence, the result is a consequence of the
convexity assumption on E .

Finally the last assertion derives from the fact that F∞ is
the maximal forward invariant set. If there were a control
u ∈ U(x) for x ∈ ∂F∞ \ ∂X such that Ax+Bu ∈ intF∞,
then by continuity this would be true on a neighbourhood
of x making F∞ larger. For details we refer to [18]. Note
that the continuous time arguments in [18] carry over to our
discrete time setting since the discrete time systems we are
considering are continuous in x.

The following proposition provides a first link between
the sets F∞ and I∞. It provides a uniform bound for V∞ on
certain subsets of the interior of the viability kernel, a key
ingredient in order to characterize the operating range of the
MPC feedback law.

Proposition 6: Let Assumption 1 be satisfied for (1).
Then, for each λ ∈ [0, 1) the optimal value function is
uniformly bounded from above on λF∞, i.e., a constant
M = M(λ) ∈ R≥0 exists such that V∞(x) ≤ M holds
for all x ∈ λF∞.

Proof: Full details of the proof can be found in [5,
Proposition 10]. It makes use of techniques developed in [6,
Lemma 12]. A broad outline is as follows.

For every point x0 ∈ intF∞ two trajectories can be
generated. One uses stabilizability of the system and the
other exploits viability of F∞. Accordingly a feedback law
F ∈ Rm×n exists such that the corresponding closed loop
x+F = (A + BF )xF satisfies xF (k;x) → 0 as k → ∞.
However, the pair (xF , FxF ) may not satisfy the constraints
while the second trajectory remains in F∞ for any time but
may not approach the origin. The idea is to take a convex
combination of these two trajectories and exploit linearity
and convexity of the data to show that such a combination
defines a feasible trajectory which converges to 0. When a
sufficiently small neighbourhood of the origin is reached,
the constraints can be neglected and the feedback law F is
applied. This procedure yields a uniform bound for V∞.

Note that both properties in Assumption 1 are essential
here. Simple examples can be constructed in which V∞
is unbounded and discontinuous in the interior of F∞ if
say E is not convex or (A,B) is not stabilizable. Note
also that according to Proposition 6 intF∞ ⊆ I∞, indeed
I∞ coincides with the domain of V∞ as a straightforward
adaptation of [17, Theorem 2] shows.

Another immediate consequence of Proposition 6 concerns
stability and recursive feasibility on any compact set K ⊆
intF∞. Indeed any such K satisfies K ⊆ intλF∞ for some
λ ∈ (0, 1). By Proposition 6, V∞ is bounded on a neighbor-
hood of K and stability and recursive feasibility follows from
Theorem 4. This leads to the following theorem.

Theorem 7: Assume the hypotheses of Proposition 6. Let
K ⊆ intF∞ be a compact set. Then, a prediction horizon
NK ∈ N exists such that, for each N ≥ NK , the MPC
feedback law µN asymptotically stabilizes the closed loop
at the origin on a recursively feasible set S ⊇ K.

Remark 8: Theorem 7 corrects and improves [17, Theo-
rem 7]. In [17] the authors allow compact sets K ⊆ I∞
which may contain points at the boundary of F∞ and use
arguments which exploit continuity of the value function on
such sets K. As we show in Example 18 continuity of the
value function may not be satisfied at the boundary of F∞.

[5, Example 14] illustrates that the required prediction
horizon may grow rapidly for initial values approaching the
boundary of the viability kernel.

V. STATIONARITY OF FEASIBLE SETS

In the preceding section we considered the stabilization
task for arbitrary compact sets contained in the interior of the
viability kernel F∞. Particularly, it follows from Theorem 4
that for each sufficiently large N MPC will yield asymptotic
stability with the basin of attraction S containing the whole
viability kernel F∞ if supV∞(F∞) is finite. In this section
we show that this property implies stationarity of the feasible
sets FN .

We say that the feasible sets FN become stationary, if
there exists N0 ∈ N with FN = FN0 for all N ≥ N0. In
[15, Theorem 5.3] (see also [10, Section 5.1]), it was shown



that stationarity of the feasible sets is sufficient for recursive
feasibility of F∞ for all optimization horizons N ≥ N0 + 1.
In the following theorem we show that it is also necessary
for V∞ being bounded on the viability kernel F∞.

Theorem 9: Consider the linear system (1) with positive
definite quadratic running costs ` and let Assumption 1 be
satisfied. Then, if V∞(x) ≤ c holds for some c ∈ R>0 and
all x ∈ F∞, the feasible sets FN become stationary for some
N0 ∈ N.

Proof: By definition FN ⊇ F∞. An adaptation of the
proof of Proposition 5 shows that FN is a convex set and it
is an easy exercise to prove that VN is a convex function. We
prove the result by showing the existence of N0 with FN0

=
F∞, which implies stationarity. We proceed by contradiction,
i.e., we assume that FN ) F∞ holds for every N ∈ N.
If N ∈ N is chosen sufficiently large, then for every x0 ∈
FN \F∞ we have that VN (x0) > c+2. Indeed, any trajectory
originating at x0 cannot reach F∞ and in particular remains
outside a ball around the origin. Fix a natural number N ∈ N
with such property and observe that by convexity of the set
FN we may chose x ∈ FN \ F∞ and y ∈ ∂F∞ such that
λy + (1 − λ)x ∈ FN \ F∞ for all λ ∈ (0, 1). This implies
the inequalities VN (λy+(1−λ)x) > c+2 for all λ ∈ (0, 1)
and VN (y) ≤ V∞(y) ≤ c. Then, for all λ ∈ (0, 1), convexity
of VN yields

c+ 2 < λVN (y) + (1− λ)VN (x) ≤ λc+ (1− λ)VN (x).

For λ sufficiently close to 1 we obtain the desired contradic-
tion since VN (x) is bounded.

The converse is not true in general as shown in the
following Example 10.

Example 10: Consider the discrete time system given by

x+ = 2x+ u with constraint set E := [−1, 1]× [−1, 1].

Since every x ∈ X = [−1, 1] is a controlled equilibrium
(u = −x) F∞ = X and, thus, FN = F∞ actually holds for
every N ∈ N. Yet, for any positive definite quadratic cost
V∞ fails to be bounded on ∂F∞ and grows unboundedly for
x→ ∂F∞, as the following computation shows.

If x0 = 1 the only admissible control sequence u is u ≡
−1 for every time instant. Indeed xu(k; 1) = 1 for every
k ∈ N. Therefore as soon as we define a cost say `(x, u) =
x2 we have that V∞(1) = +∞. The point x0 = −1 has a
similar behaviour. Every other initial point x0 ∈ (−1, 1) =
X \ {1,−1}, different from 1 and −1, can be controlled to
zero in finite time by

ux0(k) = − sign(xux0
(k;x0)) min{2|xux0

(k;x0)|, 1}.

However, the closer x0 to 1 or −1, the longer it will take
before an interval of the form [−δ, δ] for δ ∈ (0, 1) can be
reached. Hence, as x0 → 1 or x0 → −1, the value function
V∞(x0) tends to +∞.

If the infinite horizon optimal value function were contin-
uous on F∞, stationarity, as proven in Theorem 9, would
be fulfilled as soon as the condition I∞ = F∞ is verified.
Continuity of the value function is also important for other
applications in MPC, such as robustness, cf. [7].

VI. CONTINUITY OF V∞

For the reasons just mentioned, the goal of this section is to
deduce sufficient conditions for continuity of the value func-
tion V∞. To this end, we first derive lower semicontinuity
and then give a sufficient condition for upper semicontinuity.

Proposition 11: Consider linear systems (1) and quadratic
running costs ` : Rn × Rm → R≥0. Let Assumption 1 be
satisfied. Then, the value function V∞ : Rn → R ∪ {+∞}
is convex and lower semicontinuous on F∞ and continuous
on int{F∞}. In particular, V∞(·) is strictly increasing on
every ray starting from the origin and the estimate V∞(λx) ≤
λV∞(x) holds for every λ ∈ [0, 1] and x ∈ Rn.

Proof: To show that V∞(·) is a convex function is an
easy exercise. Proposition 6 implies V∞(x) < ∞ for each
x ∈ int{F∞}. Hence, V∞(·) is continuous on the interior of
its convex domain int{F∞}. It remains to show that V∞(·)
is lower semicontinuous on ∂F∞, i.e., that

lim inf
y→x, y∈F∞

V∞(y) ≥ V∞(x) (11)

holds for every x ∈ ∂F∞. Take a sequence (xi)i∈N0 ⊂
F∞ such that xi → x and lim infF∞3 y→x V∞(y) =
limi→+∞ V∞(xi). If V∞(xi) → +∞ the result is ob-
vious. We assume then, without loss of generality, that
control sequences ui ∈ U∞(xi), i ∈ N0, exist, satisfying
J∞(xi, ui) ≤ V∞(xi) + ε, for some ε > 0. Let N ∈ N be
given. Then, taking a subsequence if necessary, we have that
ui → u ∈ UN (x) for the truncated sequence ui ∈ UN (xi).
Compactness of the constraint set E (Assumption 1) was
used in order to conclude this convergence — at least for a
subsequence if necessary. Continuity of JN (·, ·) implies

VN (x) ≤ JN (x, u) = lim
i→∞

JN (xi, ui)

≤ lim inf
i→∞

J∞(xi, ui) ≤ lim
xi→x

V∞(xi) + ε.

Since the right hand side of this inequality does not depen-
dent on N and ε > 0 was chosen arbitrarily, the desired
Inequality (11) holds which implies lower semicontinuity.

Remark 12: The assumptions of Proposition 11 can be
weakened to requiring only convexity of the running costs
` : Rn × Rm → R≥0.
Proposition 11 tells us that in order to prove continuity
of V∞ only upper semicontinuity has to be established.
Observe at the outset that in dimension n = 1, when V :
R → R ∪ {+∞}, upper semicontinuity is given for free by
convexity. However, convexity is no longer sufficient when
the dimension increases. The following theorem provides
a sufficient condition in order to ensure continuity of the
value function V∞ also on ∂F∞. Explanations on set-valued
analysis and a discussion of this condition are given in
Appendix A and B, respectively.

Theorem 13: Suppose that the set-valued map

x G(x) := {u ∈ U(x) : Ax+Bu ∈ F∞}, (12)

x ∈ F∞, is continuous. Then, the value function V∞ is
continuous on F∞.



Proof: Observe that it is sufficient to show that

lim sup
y→x, y∈F∞

V∞(y) ≤ V∞(x) ∀ x ∈ ∂F∞.

Hence, pick x ∈ ∂F∞. Again, we notice that if V∞(x) =
+∞ we are done. We assume henceforth that V∞(x) < +∞.
In this case, the dynamic programming principle implies the
existence of N0 ∈ N and u ∈ UN0(x) such that

V∞(x)+ε ≥
N0−1∑
k=0

`(xu(k;x), u(k))+V∞(xu(N0;x)) (13)

for some ε > 0, xu(k;x) ∈ ∂F∞, k = 0, . . . , N0 − 1, and
xu(N0;x) ∈ int{F∞}.

Now, take any z ∈ ∂F∞ and y ∈ F∞. By hypothesis the
map (12) is continuous at z, so that for every uz ∈ U(z) with
Az + Buz ∈ F∞, and y → z, there exists uy ∈ G(y) such
that uy → uz . Observe that in particular G(y) 6= ∅, for every
y ∈ F∞, by definition of F∞. In the following calculation
we use this fact for z = xu(k;x) setting u(k) = uz for
k = 0, . . . , N0 − 1.

lim sup
y→x, y∈F∞

V∞(y)

≤ lim sup
y→x, y∈F∞

{`(y, uy) + V∞(Ay +Buy)}

≤ lim sup
y→x, y∈F∞

`(y, uy) + lim sup
y→x, y∈F∞

V∞(Ay +Buy)

= `(x, u(0)) + lim sup
y→Ax+Bu(0), y∈F∞

V∞(y)

≤ . . . ≤
N0−1∑
k=0

`(xu(k;x), u(k)) + lim sup
y→xu(N0;x), y∈F∞

V∞(y)

=

N0−1∑
k=0

`(xu(k;x), u(k)) + V∞(xu(N0;x))
(13)
≤ V∞(x) + ε.

In the last equality we used continuity of the value
function in the interior of F∞ to conclude that
lim supy→xu(N0;x), y∈F∞

V∞(y) = V∞(xu(N0;x)).

VII. AN ILLUSTRATIVE EXAMPLE

In this section we illustrate several of our results by means
of an example in which the value function V∞ is continuous
and uniformly bounded on the viability kernel F∞. This is
used in order to illustrate the assertions of Proposition 5 and
Theorem 9, i.e., it is demonstrated that the trajectory leaves
the boundary of F∞ only after touching the boundary of
the constraint set X and that the feasible sets FN become
stationary. Furthermore, the forward invariant neighbourhood
N of the origin from the proof of Proposition 2 is constructed
explicitly. Due to space restrictions we present most of our
results only graphically.

Example 14: Consider the constrained linear system(
x+1
x+2

)
=

(
1 1.1
−1.1 1

)(
x1
x2

)
+

(
0
1

)
u

with (x1, x2) ∈ X := [−1, 1]×[−1, 1] and u ∈ U := [−1, 1].
The running costs are defined as `(x, u) := |x|2+|u|2, i.e. the

Fig. 1. (left): Representation of two trajectories (dotted curves in red)
for the system with control u = 1 at each step, starting at (1, 0) and
Γ. The feasible set F1 in white, N in yellow (oval shaped). (right): The
constraints defining F1 (blue) and F2 (yellow) intersect in Ω (on the half
space x2 ≤ 0). Analogously Γ is defined as intersection of F2 and F3

(red, F3 = F∞). Θ is the intersection with the line x1 = 1.

matrix Q and R are taken equal to the identity matrix and
N = 0.

Assumption 1 is fulfilled for Example 14. First, N is
constructed. To this end, the unique symmetric and positive
definite solution P of the discrete algebraic Riccati equation

P = ATPA−ATPB(R+BTPB)−1BTPA+Q

is computed. This yields the value function V∞(x) = xTPx
of the unconstrained problem. The corresponding optimal
feedback law is given by Fx := −(R+BTPB)−1BTPAx,
see, e.g., [3, Section 10.2]. Next, the number

ρ := min

{
min

x∈{x :Fx∈ ∂U}
V∞(x) , min

x∈ ∂X
V∞(x)

}
.

is computed. Then, by convexity arguments, the level set
V −1[0, ρ] is our desired set N , cf. Figure 1 (left).

The feasible sets FN , N ∈ N, can be explicitly determined
and the equality F3 = F∞ can be shown. We observe that
the system is symmetric on opposite quadrants, i.e. A(−x)+
B(−u) = −(Ax + Bu) and that the point (1, 0) can be
steered into N in four steps with controls u(0) = . . . =
u(3) = 1, see also Figure 1 (left).

Define the points Ω,Γ and Θ as in Figure 1 (right). The
only control that renders points on the boundary of F3

feasible is u = 1, on the half space x2 ≤ 0, and u = −1
on the half space x2 ≥ 0. Points on the segment joining
(−1, 0) and Ω can be mapped into (−1, 0). In particular
(Ω, 1)+ = (−1, 0). Points on the segment ΩΓ are mapped
into (−1, 0)Ω and (Γ, 1)+ = Ω as illustrated by Figure 1(a).
Finally the segment ΓΘ is mapped into ΩΓ.

The above calculations show that Proposition 5 applies to
this example. A more careful computation shows that the
number of steps required to reach the origin is at most six,
cf. Figure 2. Thus I∞ = F∞ and indeed F3 = F∞. Finally,
continuity of V∞ always holds in R2 cf. Proposition 17.

VIII. CONCLUSIONS

We investigated recursive feasibility and asymptotic stabil-
ity for linear MPC schemes with state and control constraints
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Fig. 2. Number of steps required to reach the origin, from the inner color
(1 step) to the outer one (6 steps).

without imposing stabilizing terminal constraints or costs.
Choosing positive definite quadratic costs and assuming sta-
bilizability, we have shown that the system is asymptotically
stabilized by MPC and that any level set V −1N [0, C] is
contained in the domain of attraction for sufficiently large
optimization horizon N . This is further extended showing
that the basin of attraction S contains any compact subset
of the interior of the viability kernel F∞ if N is sufficiently
large. Our analysis moreover shows that the whole viability
kernel F∞ is contained in S if V∞ is uniformly bounded on
F∞. This property, in turn, implies stationarity of the feasible
sets FN . This holds in particular when V∞ is continuous and
F∞ = I∞.
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APPENDIX

In this appendix we provide sufficient conditions under
which the set-valued map (12) is continuous, which accord-
ing to Theorem 13 ensures continuity of V∞. To this end,
some concepts from set-valued analysis are needed, which
we define in the first section of this appendix.

A. Set-Valued Analysis

Let Z and Y be metric spaces. A set-valued map from Z
to Y , F : Z  Y , associates a set F (z) ⊆ Y to each point
z ∈ Z. We say that F is closed if it has closed set images.
Henceforth we assume that Y is compact and that F and
DomF := {z ∈ Z : F (z) 6= ∅} are closed.

Definition 15: A set-valued map F : Z  Y is called
• upper semicontinuous at z ∈ DomF if for every ε > 0

there exists δ > 0 such that

F (z′) ⊆ F (z) + εB ∀ z′ ∈ z + δB ∩DomF.

• lower semicontinuous at z ∈ DomF if for every ε > 0
there exists δ > 0 such that

F (z) ⊆ F (z′) + εB ∀ z′ ∈ z + δB ∩DomF.

We say that F is upper (lower) semicontinuous if it is upper
(lower) semicontinuous at every point z ∈ DomF .
We say that F is continuous if it is upper and lower
semicontinuous on DomF . Furthermore, observe that F is
upper semicontinuous if and only if GraphF := {(z, y) ∈
Z × Y : y ∈ F (z)} is closed.

F
nAx +Bu

Ax +Bu nn
Ax +Bv nn

Ax+Bv Ax+Bu

ζ

(0,0)

Fig. 3. Continuity proof in R2, Theorem 17(iii).

Definition 16: The upper and lower limit of F : Z  Y
at z ∈ Z are defined as

lim sup
z′→z

F (z′) := {v ∈ Y : lim inf
z′ ∈ DomF ,

z′ → z

dist(v;F (z′)) = 0},

lim inf
z′→z

F (z′) := {v ∈ Y : lim
z′ ∈ DomF ,

z′ → z

dist(v;F (z′)) = 0}.

In particular the inclusions lim infz′→z F (z′) ⊆ F (z) ⊆
lim supz′→z F (z′) hold. Equalities hold if and only if F is
respectively lower and upper semicontinuous. For details of
definitions and properties of set-valued maps, we refer the
reader to [1].

B. Sufficient Conditions for Continuity of G from (12)
We first observe that continuity of x  U(x) is a direct

consequence of the definitions. Indeed U(x) is a section
of the compact and convex set E . Compactness of E also
implies, at once, that the graph of G(·) is closed.

By [1, Proposition 1.5.2], G is continuous at x ∈ F∞
if there exists u ∈ G(x) such that Ax + Bu ∈ int{F∞}.
In particular, this implies continuity on int{F∞}. G is also
continuous at x ∈ F∞ when G(x) = {u}. Indeed, since G
is upper semicontinuous, for any sequence xn → x, xn ∈
F∞ ≡ DomG, we have that

G(xn) ⊆ G(x) + εnB = u+ εnB, for some εn ↓ 0 .

Therefore any sequence (un)n∈N with un ∈ G(xn) 6= ∅ will
converge to u. Continuity of the set-valued map G(·), then,
has to be checked only at points x ∈ ∂F∞ for which G(x)
is not a singleton and Ax+BG(x) ⊆ ∂F∞.

Proposition 17: Assume that the matrix B has full rank.
Then, the map G from (12) and thus also the value function
V∞ are continuous on the whole feasible set F∞ in the
following cases:
(i) BU(x) is strictly convex for every x ∈ ∂F∞.

(ii) F∞ is strictly convex.
(iii) The state dimension is n = 2 and the constraints are of

the form E = X × U for X ⊆ R2, U ⊆ Rm.
Proof: The cases (i) and (ii) follow from the consid-

erations before this proposition. Indeed, by our convexity
assumptions, for any x ∈ ∂F∞ the intersection Ax +
BU(x)∩F∞ = Ax+BG(x) is either a singleton or contains
points in intF∞. Those are exactly the situations in which
continuity is assured.

For proving (iii), fix u ∈ G(x), x ∈ ∂F∞ and take a
sequence of points xn ∈ F∞, n ∈ N, such that xn → x, as
n→ +∞. We assume that x is a point for which Ax+BU∩
F∞ ⊆ ∂F∞, for otherwise G(.) is continuous and there is
nothing to prove.
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Fig. 4. On the left the constraint set C for example 18. On the right C is
projected onto the plane x2 = −1.

For every n ∈ N, G(xn) 6= ∅, so that there exists vn ∈
G(xn). If Axn+Bvn → Ax+Bu, as n→ +∞ the proof is
concluded. Assume, then, that there exists v ∈ G(x), v 6= u,
such that Ax+Bv is a cluster point for the sequence (Axn+
Bvn)n∈N. Observe that the convex combination between the
origin, Ax + Bu and Ax + Bv is contained in F∞. Since
Ax+BU ∩F∞ ⊆ ∂F∞ the two convex sets Ax+BU and
F∞ can be separated (see figure 3), i.e. there exists ζ ∈ R2

such that

ζ · (Ax+Bw) ≥ ζ · (Ax+Bu) = ζ · (Ax+Bv) ≥ ζ · z,

for all w ∈ U and z ∈ F∞. In particular, ζ · (Ax + Bu) ≥
ζ · (Axn +Bvn) ≥ ζ · (Axn +Bu).

If u ∈ G(xn) we define un := u. Otherwise assume that
n ∈ N is such that Axn + Bvn is in a neighbourhood of
Ax + Bv. The lines s ∈ [0, 1] 7→ s(Axn + Bvn) + (1 −
s)(Axn +Bu) and q ∈ [0, 1] 7→ q(Ax+Bu) must intersect
at Axn+B(s̄ vn+(1− s̄)u) ∈ F∞. Define un := s̄ vn+(1−
s̄)u ∈ G(xn). In this way we construct a sequence (un)n∈N
such that un ∈ G(xn) and un → u as n→ +∞. Therefore
G(.) is lower semicontinuous and (iii) is proved.

The following example illustrates a situation in which V∞
fails to be continuous.

Example 18: Consider the set C given by the cone shown
in Figure 4, i.e., the convex hull between the point V =
(0, 2,−1) and the circle B = {(x1, x2, x3) : x2 =
−1, |x1|2 + |x3|2 ≤ 1}. Note that C contains the origin.
Define the discrete linear system x+1

x+2
x+3

 =

 1 1 0
0 1 0
0 1 1

 x1
x2
x3

+

 u1
u2
u3

 ,

u ∈ [−1, 1]3 and x ∈ C. This system satisfies Assumption
1. Moreover it can be verified that C ≡ F∞. We consider
running costs `(x, u) = |x|2 + |u|2.

We claim that the value function V∞ is discontinuous at
(0,−1,−1) implying that G is discontinuous, too.

Indeed V∞(0,−1,−1) ≤ 7 and the origin can be reached
within two steps but any point x = (x1, x2, x3) on the
semicircle Γ = {(x1,−1, x3) : x1 < 0, x3 ≤ 0 and |x1|2 +
|x3|2 = 1} has infinite cost since

x+ = Ax+BU ∩ F∞ =

 x1 + [−2, 0]
x2 + [−1, 1]
x3 + [−2, 0]

 ∩ C = x,

and the system does not move from such position. An
illustration of this fact is given in Figure 4. If a feasible
point P ∈ x+, P 6= x exists then by construction P =
λV + (1 − λ)y for some λ ∈ (0, 1) and y ∈ B. Using the
fact that |y1|2 + |y3|2 ≤ 1 and that x ∈ Γ we conclude
that |P1|2 + |P3|2 < 1. This is a contradiction. Indeed
(P1)2 + (P3)2 ≥ 1 since (P1, P3) ∈ (x1, x3) + [−2, 0]2

and x ∈ Γ.
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[5] A. Boccia, L. Grüne, and K. Worthmann, “Stability and feasibility
of state constrained MPC without stabilizing terminal constraints,”
Preprint, University of Bayreuth, 2013, submitted.

[6] R. Gondhalekar, J. Imura, and K. Kashima, “Controlled invariant
feasibility - A general approach to enforcing strong feasibility in MPC
applied to move-blocking,” Automatica, vol. 45, pp. 2869 – 2875,
2009.

[7] G. Grimm, M. Messina, S. Tuna, and A. Teel, “Examples when
nonlinear model predictive control is nonrobust,” Automatica, vol. 40,
pp. 1729 – 1738, 2004.

[8] ——, “Model predictive control: for want of a local control Lyapunov
function, all is not lost,” IEEE Trans. Automat. Control, vol. 50, pp.
546–558, 2005.
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