URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8866-0
Titelangaben
Krebs, Niko ; Demleitner, Martin ; Albuquerque, Rodrigo Q. ; Schartel, Bernhard ; Ruckdäschel, Holger:
Bayesian Optimization of flame-retardant performance in a high-Tg epoxy resin system.
In: Computational Materials Science.
Bd. 260
(2025)
.
- 114210.
ISSN 1879-0801
DOI der Verlagsversion: https://doi.org/10.1016/j.commatsci.2025.114210
Volltext
|
|||||||||
|
Download (2MB)
|
Angaben zu Projekten
| Projekttitel: |
Offizieller Projekttitel Projekt-ID Open Access Publizieren Ohne Angabe |
|---|
Abstract
Polymeric materials are widely used due to their mechanical properties and cost-effectiveness, but their inherent flammability requires effective flame-retardant additives to meet safety standards. Optimizing multi-component flame-retardant formulations is challenging due to the vast experimental space. This study applies Bayesian Optimization (BO) to optimize flame-retardant formulations in high glass transition temperature (Tg) epoxy resins. Aluminum diethyl phosphinate (AlPi) was systematically combined with three synergists: zinc stannate (ZnSt), a silicone-based additive (DowSil), and low-melting glass frits (Ceepree). BO-guided experimental design expanded from 16 initial formulations to a total of 28, minimizing the Maximum Average Rate of Heat Emission (MARHE) under the constraint of Total Smoke Production (TSP) < 17 m2 using the epsilon-constraint method. BO revealed non-linear synergistic interactions: ZnSt significantly reduced smoke production while AlPi effectively lowered heat release. The optimized formulation (BO7) achieved the lowest MARHE (122 kW/m2) while maintaining acceptable smoke levels, establishing a new Pareto front. The results demonstrate the effectiveness of BO in accelerating the development of synergistic, halogen-free flame-retardant polymer systems, offering a scalable and sustainable approach to polymer formulation design.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift |
|---|---|
| Keywords: | Machine learning; Epoxy resin; Bayesian optimization; Flame retardancy; Cone calorimeter |
| Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
| Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe > Lehrstuhl Polymere Werkstoffe - Univ.-Prof. Dr.-Ing. Holger Ruckdäschel Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe |
| Sprache: | Englisch |
| Titel an der UBT entstanden: | Ja |
| URN: | urn:nbn:de:bvb:703-epub-8866-0 |
| Eingestellt am: | 06 Feb 2026 12:41 |
| Letzte Änderung: | 06 Feb 2026 12:42 |
| URI: | https://epub.uni-bayreuth.de/id/eprint/8866 |

im Publikationsserver
bei Google Scholar
Download-Statistik