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 A B S T R A C T

Polymeric materials are widely used due to their mechanical properties and cost-effectiveness, but their 
inherent flammability requires effective flame-retardant additives to meet safety standards. Optimizing multi-
component flame-retardant formulations is challenging due to the vast experimental space. This study applies 
Bayesian Optimization (BO) to optimize flame-retardant formulations in high glass transition temperature 
(Tg) epoxy resins. Aluminum diethyl phosphinate (AlPi) was systematically combined with three synergists: 
zinc stannate (ZnSt), a silicone-based additive (DowSil), and low-melting glass frits (Ceepree). BO-guided 
experimental design expanded from 16 initial formulations to a total of 28, minimizing the Maximum Average 
Rate of Heat Emission (MARHE) under the constraint of Total Smoke Production (TSP) < 17 m2 using 
the epsilon-constraint method. BO revealed non-linear synergistic interactions: ZnSt significantly reduced 
smoke production while AlPi effectively lowered heat release. The optimized formulation (BO7) achieved the 
lowest MARHE (122 kW/m2) while maintaining acceptable smoke levels, establishing a new Pareto front. 
The results demonstrate the effectiveness of BO in accelerating the development of synergistic, halogen-free 
flame-retardant polymer systems, offering a scalable and sustainable approach to polymer formulation design.
1. Introduction

Polymers and polymeric composites are in high demand across 
various industries – such as transportation, construction, and electron-
ics – due to their excellent specific mechanical properties, corrosion 
resistance, and lower cost compared to metallic counterparts. How-
ever, because of their organic nature, they are generally intrinsically 
flammable, making the use of flame retardants essential to enhance 
their fire performance and ensure compliance with required safety 
regulations.

Here, multicomponent flame retardant systems that rely on syner-
gistic effects are often used to meet these requirements. For example, 
dripping of burning melt in the UL 94 vertical burn test is a critical 
failure mode for thermoplastics. Many flame-retardant polymers melt 
and drip when exposed to flame, which can ignite cotton placed below 
the specimen—disqualifying them from passing UL 94 V-0 or V-1 
rating [1,2]. Here often PTFE or PFBS are additionally used in low 
concentrations of 0.1%–1% to prevent dripping by fibril formation 
as reinforcing network inside the molten polymer [3]. However Per- 
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and polyfluoroalkyl substances including PTFE and PFBS, commonly 
known as PFAS are recently under increasing restrictions and there are 
ambitions to replace them.

For halogenated polymers, almost exclusively and well established 
since the 1950s, the synergist Antimony trioxide (Sb2O3) is used. Sb2O3
increases the releasing rate of halogens from aromatic halides via the 
formation of antimony halides and oxyhalides during combustion. They 
support the quenching of highly-reactive combustion radicals in the 
gas-phase [4,5]. Therefore, the halogen content can be significantly 
reduced from 15%–20% to 5%–7% with typically 1%–2% antimony 
trioxide [6]. However, due to a sharp ten-fold increase in the price 
of antimony trioxide – from $5000 in 2019 to $50,000 in 2025 – 
driven by Chinese export restrictions, and in light of growing regulatory 
pressure and environmental concerns, a clear shift toward alternative, 
halogen-free flame retardants is emerging.

Phosphorus- and nitrogen-based flame retardants are increasingly 
used – either alone or in combination – as effective replacements [7,8]. 
These systems work by reducing the formation of flammable volatiles 
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Fig. 1. Literature overview of the influence of AlPi and synergist content on the PHRR [10–27]. All measurements were carried out with 50 kW/m2 heat flux.
and promoting the development of a dense, phosphorus-rich,
crosslinked char that serves as a protective barrier for various polymers. 
Depending on the formulation, both combinatorial and synergistic 
effects on flame-retardant performance can be observed [9].

Organic phosphates and phosphinates are commercially
well-established flame retardants, valued for their high phosphorus 
content and excellent thermal stability, which make them suitable for 
both thermoplastic and thermoset systems. Among these, ammonium 
phosphates and aluminum phosphinates (AlPi) are the most widely 
utilized.

Numerous studies have investigated the combinatorical/synergistic 
effects of various flame retardants in combination with AlPi. Fig.  1 
provides an overview of the impact on the maximum heat release 
rate (pHRR) in different polymers, using AlPi as the primary flame 
retardant along with various synergists. The results reveal a clear trend: 
multicomponent flame retardant systems offer significantly enhanced 
flame retardant performance.

For instance, Goller et al. reported that the addition of 5wt −% zinc 
stannate (ZnSt) as a synergist achieved a significant pHRR reduction 
of 30% in polyamide 6.6 systems [28]. Furthermore, the study demon-
strates the ability of ZnSt to act not only as a flame retardant enhancer 
but also as a smoke suppressant, thereby contributing to improved 
overall fire safety properties.

Similarly, the work of Sanchez-Olivarez et al. highlighted the effec-
tiveness of incorporating 2wt −% of DowSil, a silicone-based synergist, 
into a thermoplastic starch biocomposite system. This addition led to 
a remarkable pHRR reduction of 32%, further emphasizing the role of 
carefully selected synergists in optimizing flame retardant efficiency in 
diverse polymer matrices [29].

Another promising synergist are low-melting inorganic glass frits 
(marketed under the brand name Ceepree by Azelis and Flamtard V100
by William Blythe). As discovered by Wu et al., Ceepree forms a glassy 
barrier that protects the polymer from further thermal degradation, re-
sulting in a significant reduction in pHRR of up to 63% [30]. Recently, 
the combination of AlPi with Flamtard V100 in an epoxy resin and its 
glass-fiber-reinforced composites were explored [31,32].

However, the use of multiple flame retardants makes the optimiza-
tion of flame-retardant systems challenging, as traditional trial-and-
error methods and design of experiments (DoE) quickly reach their 
2 
limits. For example, combining three different flame retardants at four 
concentration levels already results in 64 experiments, making the 
optimization process costly and time-consuming.

Recently, machine learning (ML) techniques have emerged as pow-
erful tools for identifying optimal parameters and detecting correlations 
in large, complex datasets—without the need for explicit mathematical 
models [33,34]. Such approaches are particularly promising for accel-
erating the optimization of flame-retardant polymeric materials [35]. 
Recent studies often rely on large datasets – sometimes comprising 
several hundred data points – such as the chemical structures of flame 
retardants analyzed via multivariate linear regression (MLR) [36], or 
published cone calorimeter data used in extreme gradient boosting 
(XGB) models [37].

In recent years, the application of ML to materials design has ex-
panded rapidly, enabling the efficient exploration of high-dimensional 
formulation spaces and the identification of structure–property rela-
tionships that are difficult to capture with conventional experimental 
approaches [38].

In the field of flame-retardant materials, ML has been employed to 
predict fire performance parameters and optimize additive combina-
tions for enhanced flame resistance, smoke suppression, and mechani-
cal integrity [39,40]. These methods have demonstrated the potential 
to accelerate the discovery of safe and effective flame-retardant formu-
lations by guiding targeted experimentation and reducing the need for 
extensive trial-and-error testing.

In contrast, when working with a limited number of data points, the 
ML technique known as Bayesian Optimization (BO) has proven partic-
ularly effective. It significantly reduces the time required to identify 
optimal parameters in various polymer-related applications [41–44].

In another study, Verret et al. investigated the influence of ammo-
nium polyphosphate (APP) and pentaerythritol (PER) on the Limiting 
Oxygen Index (LOI) of polypropylene. Using Multi-Objective Bayesian 
Optimization (MOBO), they identified an optimal total additive concen-
tration of 24 wt. −%, comprising 17% APP and 7% PER [45]. Schenck 
et al. investigated the optimization of flame-retardant polyamide for-
mulations containing up to 11 components. An initial dataset of 75 
formulations was analyzed first. Subsequently, a BO approach led to a 
reduction in peak heat release rate (pHRR) of 73.3% compared to the 
neat resin, using four of the nine investigated flame retardants [46].
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Fig. 2. Overview of the used resin system and flame retardants.

This study aims to identify an optimal AlPi-based flame retar-
dant formulation that incorporates the three synergists: zinc stannate, 
DowSil, and Ceepree (CP), for a selected resin system using a BO 
approach [47]. Techniques such as uncertainty sampling and the 𝜖-
constraint method were employed to progressively improve the fire 
properties—peak heat release rate (PHRR) and maximum average rate 
of heat emission (MARHE). Here, a constrained Bayesian optimization 
approach was employed to minimize MARHE while keeping TSP within 
defined (low) limits, as both are critical factors for fire safety. The gen-
erated Pareto front serves as a visual and analytical tool to understand 
and quantify the trade-offs between the different objectives.

2. Experimental

2.1. Materials

The multifunctional semi-solid novolac epoxy resin Epiclon HP-
7250 (DIC Corporation, Tokyo, Japan) with an epoxy equivalent weight 
(EEW) of 162 was used. As curing agent, micronized
4,4-diaminodiphenyl sulfone Technicure K-10 provided by Acci Special-
ity Materials (Linden, NJ, USA) with a particle size of D50 = 10 μm was 
used. The amine hydrogen equivalent weight (AHEW) of the curing 
agent was 62.

As the primary flame retardant, diethylaluminium phosphinate Ex-
olit OP935 of Clariant AG (Muttenz, Switzerland) with an average 
particle size of D50 = 10 μm was used. With a high phosphorus 
content of 23%, good flame-retardant properties can be achieved even 
at low filler loading. In addition, three flame retardant synergists were 
incorporated: Zinc stannate Flamtard S provided by William Blythe 
(United Kingdom), low melting glass frits Ceepree C200m from Azelis 
(Belgium), and the silicone-based additive DowSil 43-821 from Dow 
Chemical (USA).

Fig.  2 shows the chemical structure of the resin system and flame 
retardants.
3 
2.2. Specimen preparation

The epoxy resin was preheated to 120 ◦C in a vacuum dissolver 
(VMA Getzmann Dispermat, Reichshof, Germany). Subsequently, the 
flame retardants were added separately, with each addition followed 
by at least 5 min of mixing to ensure a homogeneous dispersion. After 
the final flame retardant was added and thoroughly mixed, the curing 
agent 4,4’-DDS was introduced and mixed under continuous degassing 
until a uniform mixture was achieved.

The formulation was then poured into preheated vertical molds 
(3 mm thickness) at 120 ◦C. The curing cycle was carried out in a 
convection oven (Memmert ULE 400) and consisted of the following 
steps: 1 h at 120 ◦C, 3 h at 180 ◦C, and a post-curing step of 2 h at 250 ◦C, 
all with a heating rate of 3 K/min. Cooling to room temperature was 
performed over 12 h at a cooling rate of 1 K/min.

2.2.1. Cone calorimetric measurements
Fire testing was carried out on an iCone calorimeter from Fire 

Testing Technology Ltd. (East Grinstead, England). According to DIN 
ISO 5660, samples measuring 100 mm × 100 mm with 3 mm thickness 
are wrapped in an aluminum foil pocket and placed in a metal frame 
sample holder, which exposed 88.4 cm2 of the sample surface. The 
samples were irradiated at a distance of 25 mm with a heat flux of 
35 kW/m2. Key fire behavior parameters, including the total smoke 
production (TSP), heat release rate (HRR), and average rate of heat 
emission (ARHE), were recorded to assess the flame retardancy effects. 
The maximum value of ARHE over the duration of the test, referred 
to as the MARHE, was used as one of the optimization targets in this 
study. To ensure reliable results, at least three samples were measured 
for each mixture under identical conditions. In cases where notable 
data variability was observed, additional replicates were considered to 
enhance the accuracy of the reported values.

2.3. Bayesian optimization of formulations

New formulations were proposed through iterative rounds of BO. 
The general procedure of Bayesian Optimization can be described as 
follows: First, the objective function to be optimized is defined. A 
surrogate model is then selected – in this case, a Gaussian Process 
Regressor (GPR) – to approximate the unknown objective function in 
a probabilistic manner. GPRs are well suited for this task due to their 
ability to model complex relationships, quantify prediction uncertainty, 
and provide interpretable outputs.

The GPR predicts the target property of a new formulation based on 
its similarity to previously tested samples. This similarity is quantified 
using a kernel function; in this work, a radial basis function (RBF) 
kernel was employed. The underlying assumption is that similar input 
features will yield similar target properties.

In addition to predicting a mean value, the GPR provides an es-
timate of the uncertainty associated with each prediction. This infor-
mation is used in the so-called acquisition function, which evaluates a 
large number of virtual samples by combining their predicted means 
and uncertainties. The sample with the highest expected utility is 
selected as the next candidate for experimental validation. Depending 
on whether the predicted value or its uncertainty is prioritized, the 
algorithm performs either exploitation or exploration.

In this study, the Expected Improvement (EI) acquisition function 
was applied: 

𝐸𝐼(𝐱) =
⎧

⎪

⎨

⎪

⎩

(𝜇(𝐱) − 𝑓 (𝐱+) − 𝜉) ⋅𝛷(𝑍) + 𝜎(𝐱) ⋅ 𝜙(𝑍),
if 𝜎(𝐱) > 0

0, otherwise
(1)

where 

𝑍 =
𝜇(𝐱) − 𝑓 (𝐱+) − 𝜉

𝜎(𝐱)
(2)
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Table 1
Overview of initial dataset formulations with flame retardant additives.
 ID AlPi ZnSt DowSil Ceepree Source  
 wt.% wt.% wt.% wt.%  
 A0 0.00 0.00 0.00 0.00 This work 
 A1 5.00 0.00 0.00 0.00 This work 
 A2 10.00 0.00 0.00 0.00 This work 
 A3 20.00 0.00 0.00 0.00 This work 
 A4 25.00 0.00 0.00 0.00 This work 
 A5 0.00 0.00 0.00 15.00 This work 
 L1 10.00 6.50 0.00 0.00 [28]  
 L2 10.00 0.00 2.00 0.00 [29]  
 L3 10.00 0.00 0.00 2.00 [49]  
 L4 10.00 0.00 0.00 10.00 [30]  
 R1 10.90 2.58 1.28 0.00 This work 
 R2 6.10 6.85 2.52 0.00 This work 
 R3 8.74 8.28 1.13 0.00 This work 
 R4 11.39 7.15 3.56 0.00 This work 
 R5 11.56 3.24 2.28 1.81 This work 
 R6 9.48 1.33 1.10 2.14 This work 

Here, 𝜇(𝐱) is the predicted mean and 𝜎(𝐱) the predicted standard 
deviation at input 𝐱. 𝑓 (𝐱+) is the best observed function value so far, 
and 𝜉 is a parameter controlling the trade-off between exploration 
and exploitation (set to 0.02 in this work). 𝛷(𝑍) and 𝜙(𝑍) denote 
the cumulative distribution and probability density functions of the 
standard normal distribution, respectively.

The GPR hyperparameters and the EI acquisition function param-
eter 𝜉 = 0.02 were selected based on their proven effectiveness in 
closely related multi-objective optimization studies on epoxy resin sys-
tems [48]. These settings have consistently yielded a balanced trade-off 
between exploration and exploitation and demonstrated stable con-
vergence without requiring dedicated hyperparameter tuning. In this 
study, no additional hyperparameter optimization was performed, as 
the primary objective was to evaluate the feasibility and efficiency 
of BO in guiding flame-retardant formulation development under con-
strained experimental budgets. The use of pre-validated parameters 
ensured comparability with prior results and minimized the risk of 
overfitting to the limited dataset.

Based on prior experience with formulation optimization tasks [41,
42], the Expected Improvement function proved particularly effective.

2.3.1. Data preparation
Initial dataset. Before optimizing the target parameters MARHE and 
TSP, an initial dataset was generated to serve as the foundation for 
regression-based modeling of material behavior. This dataset includes 
various formulations to ensure a diverse and well-balanced representa-
tion of material compositions.

The first set of formulations consists of the base resin-hardener sys-
tem and its mixtures with systematically varying the AlPi concentration 
to study its sole influence on flame retarding performance. The neat 
resin (A0) showed a MARHE of 236 kW∕m2 and a TSP of 16m2, serving 
as the baseline for comparison with all other formulations. Addition-
ally, four flame-retardant combinations inspired by literature were 
incorporated to further expand the dataset. Due to limited available 
data on Ceepree-AlPi interactions, a formulation containing 15wt.%
Ceepree was also included.

To further enhance diversity and minimize potential bias, six ad-
ditional compositions were randomly selected from the virtual dataset 
(explained in the next section).

Table  1 summarizes the complete list of realized formulations as 
part of the initial dataset, categorizing samples based on their type 
(AlPi-based 𝐴𝑛, literature-derived 𝐿𝑛, or randomly selected samples 
𝑅 ). 
𝑛

4 
Table 2
Compositional constraints for the virtual dataset.
 Component Range 
 (wt.%) 
 AlPi 0–20  
 ZnSt 0–10  
 DowSil 0–10  
 Ceepree 0–15  
 Total Additives ≤ 25  

2.3.2. Virtual dataset and boundary conditions
To ensure a comprehensive exploration of the formulation space, a 

virtual dataset was created, comprising 106 unique compositions. This 
large dataset allows for a more extensive parameter space investiga-
tion and provides an initial foundation for the Bayesian Optimization 
process.

The compositional constraints defining the virtual dataset were 
carefully chosen to balance fire performance, processability, and ma-
terial feasibility. The constraints are summarized in Table  2. 

2.3.3. Optimization procedure
The Bayesian Optimization process was used to iteratively refine 

and enhance the predictive precision of the regression model. A
flowchart summarizing the optimization workflow is presented in
Fig.  3, illustrating the stepwise approach used to navigate the formula-
tion space.

2.3.4. Pareto front analysis and sample domination
A Pareto front analysis was performed to balance the optimization 

of MARHE and TSP. The Pareto front represents the set of formulations 
that achieve an optimal trade-off between these two target properties.

A formulation is considered dominant over another if it has:

• Lower MARHE (better fire performance)
• Lower TSP (less smoke production)
If a formulation 𝐹1 has both lower MARHE and lower TSP than 

another formulation 𝐹2, then 𝐹1 dominates 𝐹2 and is part of the pareto 
front. This concept is illustrated in Fig.  5, which visually maps the 
trade-offs between formulations.

2.3.5. Reference model and weight coefficients
To benchmark the BO-driven regression models, a simple linear 

reference model was established. The model follows:
𝑓 =

∑

𝑤𝑖𝑥𝑖 +𝑁

where 𝑤𝑖 represents the weight coefficient of each flame retardant 
component 𝑥𝑖 and 𝑁 describes the resin behavior without flame retar-
dant additivation. These coefficients, derived from regression analysis, 
provide insights into the influence of each additive:

• Negative coefficients indicate performance improvement.
• Positive coefficients suggest a detrimental effect on MARHE or 
TSP.

By comparing these coefficients with the BO-driven model, the con-
tribution of each additive can be evaluated, guiding future formulation 
design.

These regression-based insights into individual flame retardant con-
tributions complement the broader goal of identifying optimal multi-
component formulations. To efficiently search the vast formulation 
space and systematically improve fire performance, BO was employed.

BO uses a data-driven, iterative strategy that balances exploration 
of new material combinations with the refinement of already promising 
regions. The optimization loop—illustrated in Fig.  3—starts with the 
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Fig. 3. Flowchart of used Bayesian optimization cycle.
selection of initial random formulations and their experimental valida-
tion. This data is then used to train a Gaussian Process (GP) model, 
which not only predicts MARHE and TSP for all virtual formulations, 
but also quantifies the uncertainty of each prediction.

The predicted values and associated uncertainties are combined 
using an acquisition function—specifically, the maximum expected 
improvement (maxEI). This guides the selection of the next most in-
formative formulation to test. By iteratively repeating this process, 
the algorithm steers the search toward compositions with increasingly 
favorable properties while simultaneously improving its predictive ac-
curacy.

The workflow diagram in Fig.  3 highlights this closed-loop struc-
ture, where experimentation and prediction continuously inform one 
another. This combination of machine learning and targeted experi-
mentation proved to be highly effective for navigating the complex, 
multi-objective formulation space.

The optimization process consisted of a total of eight experimental 
iterations, including five BO cycles and three intermediate uncertainty 
sampling steps. The number of cycles was determined by practical con-
straints such as available material quantities, experimental time, and 
budget. The procedure was concluded when improvements between 
consecutive BO cycles became marginal and the Pareto front did not 
show any further significant advancement.

3. Results and discussion

Upon completion of the base dataset, the Gaussian Process regres-
sion model was applied to estimate MARHE and TSP values, along with 
associated prediction uncertainties, for all 106 virtual flame-retardant 
formulations.

3.1. Reduction of model uncertainty via uncertainty sampling

Given the limited initial dataset, the GP regression model exhibited 
high prediction uncertainty (i.e., high variance), particularly for for-
mulations distinct from previously measured samples. To address this, 
uncertainty sampling was applied by selecting two compositions – one 
for MARHE and one for TSP – with the highest predicted variance in 
the Gaussian Process model.

A complete overview of all tested formulations, including their 
compositions as well as the measured MARHE, TSP, and PHRR values, 
is provided in Table S1 of the Supporting Information.
5 
Table 3
Samples suggested by BO of MARHE/TSP.
 ID AlPi ZnSt DowSil Ceepree MARHE TSP 
 wt.% wt.% wt.% wt.% kW∕m2 m2  
 BO1 6.85 0.07 9.99 0.02 164 19  
 BO2 5.96 0.11 9.83 8.95 163 17  
 BO3 19.85 4.57 0.07 0.03 128 16  
 BO4 6.16 8.71 0.15 9.91 153 13  
 US3 6.10 2.30 5.10 0.80 160 18  

US1 and US2 both featured low AlPi content combined with high 
proportions of ZnSt and Ceepree—combinations not yet represented 
in the existing dataset. Additionally, US1 included 4.4wt.% DowSil, 
thereby covering a previously unexplored three-component region
within the formulation space.

Although these samples were not intended for performance opti-
mization, the cone calorimeter measurements revealed consistent fire 
behavior. US2 achieved a slightly lower MARHE than US1 (reduced by 
approximately 11%), with both samples showing identical TSP values. 
Importantly, US2 was located on the fourth Pareto front, indicating 
a previously unreached balanced trade-off between MARHE and TSP. 
This highlights the effectiveness of uncertainty sampling in identifying 
unexplored yet promising regions of the formulation space.

These findings underscore the importance of targeted data acquisi-
tion in underrepresented composition ranges to improve model robust-
ness and support efficient optimization in subsequent iterations.

3.2. Target property optimization of MARHE and TSP by Bayesian opti-
mization

Following the incorporation of uncertainty sampling, the first BO 
round was conducted to improve the fire performance metrics MARHE 
and TSP. Based on the augmented dataset, two formulations were 
proposed—each optimized individually for one of the two target prop-
erties (Table  3). 

BO1 aimed to minimize MARHE and comprised 6.9wt.% AlPi and 
the maximum allowed 10.0wt.% DowSil.

BO2, optimized for TSP, included similar AlPi content (6.2 wt.%) 
but had a substantially increased Ceepree content (from 0.02 wt.% in 
BO1 to 8.95 wt.%), while maintaining a similar DowSil level.

The ZnSt content remained negligible in both cases.
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Table 4
Samples suggested by Bayesian optimization of MARHE under TSP constraint.
 ID AlPi ZnSt DowSil Ceepree MARHE TSP 
 wt.% wt.% wt.% wt.% kW∕m2 m2  
 BO5 19.83 0.06 0.12 4.90 131 18  
 BO6 17.07 0.09 7.60 0.12 239 13  

Cone calorimeter results showed that neither sample significantly 
outperformed the existing data. MARHE values were nearly identical 
for both BO1 and BO2, and TSP values showed only a slight improve-
ment in BO2. Consequently, neither formulation qualified for inclusion 
in the updated Pareto front.

To enhance model robustness, a third composition was additionally 
selected via uncertainty sampling. The new BO suggestions – targeting 
MARHE and TSP, respectively – featured almost no DowSil, indicating 
that its contribution to performance in this system is limited.

The MARHE-optimized sample from this round contained 19.9wt.%
AlPi and 4.6wt.% ZnSt, while the Ceepree content was reduced to a very 
small level. This observation aligns with previous findings suggesting 
a positive correlation between high AlPi content and reduced MARHE. 
In contrast, the TSP-optimized sample combined moderate AlPi con-
tent (6.2wt.%) with 9.9wt.% Ceepree and 8.7wt.% ZnSt—aligning with 
literature reports on the smoke-suppressing effects of ZnSt.

Cone calorimetry confirmed this differentiation: the MARHE-
optimized sample achieved the second-lowest MARHE value thus far 
(128 kW∕m2), while the TSP-optimized sample recorded a relatively 
low TSP of 13m2. The uncertainty sampling point did not contribute 
to further improvement in either property but enhanced coverage of 
the formulation space.

These results confirm the value of Bayesian optimization for it-
erative formulation improvement and demonstrate the importance of 
balancing exploration and exploitation to guide experimental design.

3.3. Bayesian optimization of MARHE under TSP constraint

To simultaneously fulfill the regulatory limits for MARHE and TSP, 
the optimization strategy was adapted using the epsilon-constraint 
method. Based on the shape of the current Pareto front—resembling 
a hyperbolic trade-off it was concluded that MARHE remained the 
more critical property to be improved. Consequently, MARHE was 
selected as the primary optimization target, while TSP was constrained 
to remain below 17m2. This approach ensures that newly suggested 
formulations are located within the desired target region of the result 
space, characterized by simultaneously low MARHE and TSP values.

This constraint was applied to the entire virtual dataset by filtering 
out all compositions with predicted TSP values above this threshold. 
The resulting filtered dataset contained approximately 396 000 samples, 
serving as the new search space (virtual dataset) for subsequent BO 
rounds. 

Two additional BO cycles were performed using this filtered dataset 
(Table  4). Both BO5 and BO6 suggested high AlPi contents—19.8wt.%
and 17.1wt.%, respectively—confirming the established correlation be-
tween AlPi loading and MARHE reduction. ZnSt was nearly absent in 
both formulations, while Ceepree and DowSil were each explored once 
as the sole synergist. The flame retardant ratios of AlPi to synergist 
varied between 4.0 and 2.2, allowing targeted comparison of their 
effects.

Experimental results revealed that BO5 reached a MARHE of
131 kW∕m2, close to the best values achieved so far. However, its 
TSP of 18m2 exceeded the defined constraint and disqualified the 
formulation from the updated Pareto front. BO6, which relied on 
DowSil as synergist, resulted in a substantially higher MARHE of 
239 kW∕m2, suggesting that DowSil does not contribute effectively to 
MARHE reduction in this system. Its TSP value of 13m2 did meet the 
constraint.
6 
Table 5
Included samples from scientific intuition and final BO round.
 ID AlPi ZnSt DowSil Ceepree MARHE TSP 
 wt.% wt.% wt.% wt.% kW∕m2 m2  
 SI1 0.00 10.00 0.00 0.00 202 12  
 SI2 5.00 10.00 0.00 0.00 165 11  
 BO7 15.28 8.98 0.00 0.00 122 16  

Neither BO5 nor BO6 qualified for the updated Pareto front, indicat-
ing that while the epsilon-constraint approach effectively focused the 
virtual dataset, further refinement of the data would be required for 
continued progress.

3.4. Incorporation of scientific intuition to improve the BO model

Recent BO iterations revealed a stagnation in performance gains, 
suggesting that further progress would require refinement of the dataset 
itself. To support this, results from earlier cycles were revisited, par-
ticularly the effective MARHE reduction observed in sample BO3, 
which combined AlPi with ZnSt. This prompted a hypothesis-driven 
investigation into the specific effect of ZnSt as a synergist. 

To test this, two new samples were designed and experimentally 
validated (Table  5). SI1 contained 10wt.% ZnSt as the sole flame 
retardant, while SI2 combined 10wt.% ZnSt with 5wt.% AlPi—resulting 
in an AlPi:ZnSt ratio of 0.5, identical to that in BO3. These compositions 
aimed to isolate and clarify the synergistic potential of ZnSt, especially 
in low-AlPi systems.

The results confirmed that ZnSt effectively suppresses smoke forma-
tion. SI1 achieved a TSP of 12m2, which is significantly below average, 
despite containing only 10wt.% total flame retardant. However, its 
MARHE was comparable to the neat sample, indicating limited effect 
on heat release. SI2, on the other hand, exhibited a further reduction 
in TSP to 11m2 and a substantial MARHE improvement to 165 kW∕m2. 
This confirmed the beneficial interaction between AlPi and ZnSt.

Guided by this insight, a subsequent BO cycle was executed us-
ing the epsilon-constraint method (Table  5). The newly suggested 
sample, BO7, combined AlPi and ZnSt and resulted in a MARHE of 
122 kW∕m2—the lowest value recorded in the entire study. Addition-
ally, it was the first formulation to reduce the peak heat release below 
200 kW∕m2.

This demonstrates that integrating targeted experimental knowl-
edge into the optimization workflow can enhance the efficiency and 
accuracy of the BO model. BO7 defines the new optimal formulation 
on the final Pareto front, dominating all previous candidates in MARHE 
while maintaining acceptable TSP performance.

3.5. Overview of the stepwise optimization progress

The success of the BO strategy is illustrated by tracking the normal-
ized MARHE and TSP values across all experimental iterations Fig.  4. 
The values are normalized with respect to the neat reference formu-
lation, enabling a direct comparison of flame-retardant performance. 
While early samples – including random and literature-based formula-
tions – showed limited improvement, a clear downward trend in both 
metrics emerges following the introduction of BO-guided suggestions. 
This reflects the increasing effectiveness of targeted exploration and 
model refinement throughout the optimization process.

The evolution of the Pareto front is shown in Fig.  5, highlighting the 
shift in optimal trade-offs between MARHE and TSP across different BO 
cycles. As new, data-driven formulations were introduced, the Pareto 
front progressively moved toward the lower left region of the result 
space—indicating simultaneous improvement in both objectives. The 
final front includes BO7, which defines the lowest MARHE value in the 
dataset while maintaining acceptable TSP performance.

Together, these visualizations underscore the efficiency of the BO 
workflow in systematically guiding the experimental design toward the 
constrained optimization of MARHE under a TSP bound.
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Fig. 4. Normalized development of MARHE and TSP in course of the optimiza-
tion. The dashed dark green line shows the linear trend during optimization.

Fig. 5. Evolution of the Pareto front in the MARHE–TSP objective space. 
Each color represents a different stage of the optimization process. Black dots 
indicate dominated samples not part of the Pareto front.

3.6. Detailed fire behavior analysis of selected formulations

To deepen the understanding of flame-retardant mechanisms be-
yond aggregated performance values, selected formulations from the 
Pareto front were analyzed in detail using further data from cone 
calorimetric analysis. The temporal profiles of heat release and smoke 
production provide insight into the interplay between the applied flame 
retardants.

Optimized formulations – especially BO7, containing AlPi, ZnSt, and 
CP – show a delayed and flattened fire development. This is evident in 
the heat release rate (HRR) profile (Fig.  6), which demonstrates signif-
icantly reduced peak intensities and a prolonged growth phase. Such 
behavior indicates efficient flame inhibition and increased thermal 
stability under fire conditions.

While AlPi effectively lowers MARHE, it tends to increase TSP. ZnSt, 
in contrast, has a pronounced smoke-suppressing effect. CP comple-
ments this by acting as a barrier former, further reducing the heat 
release. The combined effect of ZnSt and CP results in lower TSP 
7 
Fig. 6. Development of the HRR for the Pareto samples.

Fig. 7. Smoke behavior of all Pareto samples.

without compromising heat emission behavior, as visualized in the TSP 
and smoke production rate (SPR) curves (Fig.  7).

For instance, BO7 achieved a MARHE of 122 kW∕m2 and a TSP of 
16m2, balancing both performance metrics within acceptable limits. 
These observations confirm the value of synergistic multi-component 
systems: AlPi governs heat release, ZnSt suppresses smoke, and Ceepree 
enhances residue formation. Their combined use allows for improved 
efficiency at lower total loadings, supporting processability and ma-
terial integrity in application-specific formulations. To gain deeper 
insight into the underlying flame-retardant mechanisms, selected for-
mulations were examined after combustion, focusing on the morphol-
ogy of the resulting char residues. A comparison of representative 
samples revealed three distinct types of char formation, each associated 
with different fire performance profiles.

In the neat resin (A0), combustion left behind only a fragmented and 
porous residue without any coherent protective layer, with a residue 
yield of 33%. This insufficient barrier formation is directly reflected in 
high MARHE values and average TSP results, highlighting the limited 
intrinsic flame resistance of the base resin. In contrast, US1, a CP-
rich formulation with low AlPi content, formed a dense and stable 
char layer with a smooth and unbroken surface, corresponding to a 
residue yield of 49%. This melt-derived barrier remained mechanically 
intact after combustion and effectively suppressed smoke evolution. 
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Fig. 8. Residual char layer of sample A0 (a), US1 (b) and BO7 (c) after cone 
measurement.

Table 6
Linear regression coefficients for the influence of 
each flame retardant on MARHE and TSP.
 FR MARHE TSP 
 AlPi −188 +7  
 ZnSt −36 −17 
 DowSil +71 0  
 CP +29 −9  
 𝑘0 159 16  

A third and particularly effective type of residue was observed in 
BO7, which combines AlPi and ZnSt. This formulation produced a 
voluminous, intumescent char that expanded during combustion, with a 
residue yield of 50%. The resulting structure provided strong insulation 
and radical quenching effects, leading to the lowest MARHE values 
observed in the study.

A visual impression of the degraded residues is shown in Fig.  8.
These observations demonstrate that the type and quality of char 

formation critically determine the balance between heat release sup-
pression and smoke development. A stable and continuous barrier 
promotes low smoke generation, while intumescence enhances thermal 
shielding but may compromise smoke performance.

4. Linear regression analysis

To assess the influence of individual flame retardants on the key 
fire performance parameters, a multiple linear regression (MLR) was 
applied to the whole dataset. The goal of this simplified model was not 
to predict target properties with high accuracy, but rather to extract 
general trends and directionality in the influence of each component.

The regression follows the general form:
𝑦 = 𝑘0 + 𝑘AlPi ⋅ 𝑥AlPi + 𝑘ZnSt ⋅ 𝑥ZnSt

+ 𝑘DowSil ⋅ 𝑥DowSil + 𝑘CP ⋅ 𝑥CP (3)

where 𝑦 is the target property (either MARHE or TSP), 𝑥𝑖 is the mass 
fraction of flame retardant 𝑖, and 𝑘𝑖 are the corresponding regression 
coefficients. The intercept 𝑘0 represents the baseline property of the 
material without any flame retardant (i.e., formulation A0). Prior to 
regression, all input variables were standardized using a 𝑧-score trans-
formation (StandardScaler) to ensure comparability of coefficients and 
to eliminate scale bias.

The resulting regression coefficients for MARHE and TSP are sum-
marized in Table  6. Negative values indicate a reducing effect on 
the respective target value, whereas positive values correspond to an 
increase.

Detailed regression plots for MARHE and TSP are provided in the 
Supporting Information as Figs. S1 and S2, respectively. 

The results confirm several trends already observed during the 
optimization. AlPi and ZnSt both contributed to a reduction in MARHE, 
with AlPi having the strongest impact. However, AlPi also increased 
TSP, in contrast to ZnSt, which showed the most significant smoke-
suppressing effect. CP and DowSil were found to influence MARHE 
8 
negatively in the linear model, indicating that they are not suitable for 
use as flame retardants in this resin system to reduce MARHE.

The suitability of the linear regression was evaluated by compar-
ing predicted and measured values. The respective correlation plots 
for MARHE and TSP are provided as Supporting Figures. While the 
general trends are captured, the scatter in the plots illustrates the 
limitations of a purely linear model, especially for compositions with 
strong synergistic behavior.

This analysis supports the interpretation of the BO results and 
provides a straightforward summary of how each flame retardant con-
tributes to heat release and smoke production in isolation.

5. Conclusion

This study successfully demonstrates the application of Bayesian 
Optimization as an efficient and data-driven methodology to enhance 
flame-retardant performance in high-Tg epoxy resin systems. By inte-
grating machine learning with targeted experimental validation, the 
multicomponent optimization of aluminum diethyl phosphinate (AlPi) 
in combination with synergists – zinc stannate (ZnSt), a silicone-based 
additive (DowSil), and a low-melting glass frit (Ceepree) – was achieved 
in a resource-efficient manner.

The BO workflow enabled the identification of complex, non-linear, 
and synergistic effects between the additives, which would be difficult 
to uncover via traditional trial-and-error approaches. Notably, ZnSt 
emerged as a key synergist for smoke suppression, while AlPi remained 
the principal agent for reducing heat release. The optimized formu-
lation BO7, combining AlPi and ZnSt, delivered the lowest recorded 
MARHE (122 kW∕m2) and simultaneously fulfilled smoke production 
constraints, defining a new Pareto-optimal front.

This research highlights the potential of Bayesian Optimization not 
only as a powerful tool for flame-retardant formulation development 
but also as a broadly applicable strategy for accelerating the design of 
high-performance, halogen-free, and sustainable polymer systems.
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