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ARTICLE INFO ABSTRACT

Keywords: Polymeric materials are widely used due to their mechanical properties and cost-effectiveness, but their
Machine learning inherent flammability requires effective flame-retardant additives to meet safety standards. Optimizing multi-
Epoxy resin component flame-retardant formulations is challenging due to the vast experimental space. This study applies

Bayesian optimization
Flame retardancy
Cone calorimeter

Bayesian Optimization (BO) to optimize flame-retardant formulations in high glass transition temperature
(Tg) epoxy resins. Aluminum diethyl phosphinate (AlPi) was systematically combined with three synergists:
zinc stannate (ZnSt), a silicone-based additive (DowSil), and low-melting glass frits (Ceepree). BO-guided
experimental design expanded from 16 initial formulations to a total of 28, minimizing the Maximum Average
Rate of Heat Emission (MARHE) under the constraint of Total Smoke Production (TSP) < 17 m? using
the epsilon-constraint method. BO revealed non-linear synergistic interactions: ZnSt significantly reduced
smoke production while AlPi effectively lowered heat release. The optimized formulation (BO7) achieved the
lowest MARHE (122 kW/m?) while maintaining acceptable smoke levels, establishing a new Pareto front.
The results demonstrate the effectiveness of BO in accelerating the development of synergistic, halogen-free
flame-retardant polymer systems, offering a scalable and sustainable approach to polymer formulation design.

1. Introduction and polyfluoroalkyl substances including PTFE and PFBS, commonly

known as PFAS are recently under increasing restrictions and there are

Polymers and polymeric composites are in high demand across ambitions to replace them.

various industries — such as transportation, construction, and electron- For halogenated polymers, almost exclusively and well established
ics — due to their excellent specific mechanical properties, corrosion since the 1950s, the synergist Antimony trioxide (Sb,0) is used. Sb,0;
resistance, and lower cost compared to metallic counterparts. How- increases the releasing rate of halogens from aromatic halides via the
ever, because of their organic nature, they are generally intrinsically formation of antimony halides and oxyhalides during combustion. They
flammable, making the use of flame retardants essential to enhance support the quenching of highly-reactive combustion radicals in the

their fire performance and ensure compliance with required safety gas-phase [4,5]. Therefore, the halogen content can be significantly

regulations. . reduced from 15%-20% to 5%-7% with typically 1%-2% antimony

. Here, multicomponent flame retardant syste.ms that rely on syner- trioxide [6]. However, due to a sharp ten-fold increase in the price
gistic effects are often used to meet these requirements. For example, of antimony trioxide — from $5000 in 2019 to $50,000 in 2025 —
dripping of burning melt in the UL 94 vertical burn test is a critical driven by Chinese export restrictions, and in light of growing regulatory

failure mode for thermoplastics. Many flame-retardant polymers melt . . .
. . o pressure and environmental concerns, a clear shift toward alternative,
and drip when exposed to flame, which can ignite cotton placed below . .
halogen-free flame retardants is emerging.

the specimen—disqualifying them from passing UL 94 V-0 or V-1 . . .
] " - Phosphorus- and nitrogen-based flame retardants are increasingly
rating [1,2]. Here often PTFE or PFBS are additionally used in low ; . o .
used - either alone or in combination - as effective replacements [7,8].

concentrations of 0.1%-1% to prevent dripping by fibril formation b X by reducine the £ . £ fl bl latil
as reinforcing network inside the molten polymer [3]. However Per- These systems work by reducing the formation of flammable volatiles
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Fig. 1. Literature overview of the influence of AIPi and synergist content on the PHRR [10-27]. All measurements were carried out with 50 kW/m? heat flux.

and promoting the development of a dense, phosphorus-rich,
crosslinked char that serves as a protective barrier for various polymers.
Depending on the formulation, both combinatorial and synergistic
effects on flame-retardant performance can be observed [9].

Organic phosphates and phosphinates are commercially
well-established flame retardants, valued for their high phosphorus
content and excellent thermal stability, which make them suitable for
both thermoplastic and thermoset systems. Among these, ammonium
phosphates and aluminum phosphinates (AlPi) are the most widely
utilized.

Numerous studies have investigated the combinatorical/synergistic
effects of various flame retardants in combination with AlIPi. Fig. 1
provides an overview of the impact on the maximum heat release
rate (pHRR) in different polymers, using AIPi as the primary flame
retardant along with various synergists. The results reveal a clear trend:
multicomponent flame retardant systems offer significantly enhanced
flame retardant performance.

For instance, Goller et al. reported that the addition of 5wt —% zinc
stannate (ZnSt) as a synergist achieved a significant pHRR reduction
of 30 % in polyamide 6.6 systems [28]. Furthermore, the study demon-
strates the ability of ZnSt to act not only as a flame retardant enhancer
but also as a smoke suppressant, thereby contributing to improved
overall fire safety properties.

Similarly, the work of Sanchez-Olivarez et al. highlighted the effec-
tiveness of incorporating 2 wt —% of DowSil, a silicone-based synergist,
into a thermoplastic starch biocomposite system. This addition led to
a remarkable pHRR reduction of 32 %, further emphasizing the role of
carefully selected synergists in optimizing flame retardant efficiency in
diverse polymer matrices [29].

Another promising synergist are low-melting inorganic glass frits
(marketed under the brand name Ceepree by Azelis and Flamtard V100
by William Blythe). As discovered by Wu et al., Ceepree forms a glassy
barrier that protects the polymer from further thermal degradation, re-
sulting in a significant reduction in pHRR of up to 63 % [30]. Recently,
the combination of AIPi with Flamtard V100 in an epoxy resin and its
glass-fiber-reinforced composites were explored [31,32].

However, the use of multiple flame retardants makes the optimiza-
tion of flame-retardant systems challenging, as traditional trial-and-
error methods and design of experiments (DoE) quickly reach their

limits. For example, combining three different flame retardants at four
concentration levels already results in 64 experiments, making the
optimization process costly and time-consuming.

Recently, machine learning (ML) techniques have emerged as pow-
erful tools for identifying optimal parameters and detecting correlations
in large, complex datasets—without the need for explicit mathematical
models [33,34]. Such approaches are particularly promising for accel-
erating the optimization of flame-retardant polymeric materials [35].
Recent studies often rely on large datasets — sometimes comprising
several hundred data points — such as the chemical structures of flame
retardants analyzed via multivariate linear regression (MLR) [36], or
published cone calorimeter data used in extreme gradient boosting
(XGB) models [37].

In recent years, the application of ML to materials design has ex-
panded rapidly, enabling the efficient exploration of high-dimensional
formulation spaces and the identification of structure-property rela-
tionships that are difficult to capture with conventional experimental
approaches [38].

In the field of flame-retardant materials, ML has been employed to
predict fire performance parameters and optimize additive combina-
tions for enhanced flame resistance, smoke suppression, and mechani-
cal integrity [39,40]. These methods have demonstrated the potential
to accelerate the discovery of safe and effective flame-retardant formu-
lations by guiding targeted experimentation and reducing the need for
extensive trial-and-error testing.

In contrast, when working with a limited number of data points, the
ML technique known as Bayesian Optimization (BO) has proven partic-
ularly effective. It significantly reduces the time required to identify
optimal parameters in various polymer-related applications [41-44].

In another study, Verret et al. investigated the influence of ammo-
nium polyphosphate (APP) and pentaerythritol (PER) on the Limiting
Oxygen Index (LOI) of polypropylene. Using Multi-Objective Bayesian
Optimization (MOBO), they identified an optimal total additive concen-
tration of 24 wt. —%, comprising 17% APP and 7% PER [45]. Schenck
et al. investigated the optimization of flame-retardant polyamide for-
mulations containing up to 11 components. An initial dataset of 75
formulations was analyzed first. Subsequently, a BO approach led to a
reduction in peak heat release rate (pHRR) of 73.3% compared to the
neat resin, using four of the nine investigated flame retardants [46].
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Fig. 2. Overview of the used resin system and flame retardants.

This study aims to identify an optimal AlPi-based flame retar-
dant formulation that incorporates the three synergists: zinc stannate,
DowsSil, and Ceepree (CP), for a selected resin system using a BO
approach [47]. Techniques such as uncertainty sampling and the ¢-
constraint method were employed to progressively improve the fire
properties—peak heat release rate (PHRR) and maximum average rate
of heat emission (MARHE). Here, a constrained Bayesian optimization
approach was employed to minimize MARHE while keeping TSP within
defined (low) limits, as both are critical factors for fire safety. The gen-
erated Pareto front serves as a visual and analytical tool to understand
and quantify the trade-offs between the different objectives.

2. Experimental
2.1. Materials

The multifunctional semi-solid novolac epoxy resin Epiclon HP-
7250 (DIC Corporation, Tokyo, Japan) with an epoxy equivalent weight
(EEW) of 162 was wused. As curing agent, micronized
4,4-diaminodiphenyl sulfone Technicure K-10 provided by Acci Special-
ity Materials (Linden, NJ, USA) with a particle size of D5 = 10 pm was
used. The amine hydrogen equivalent weight (AHEW) of the curing
agent was 62.

As the primary flame retardant, diethylaluminium phosphinate Ex-
olit OP935 of Clariant AG (Muttenz, Switzerland) with an average
particle size of Dgy = 10 pm was used. With a high phosphorus
content of 23%, good flame-retardant properties can be achieved even
at low filler loading. In addition, three flame retardant synergists were
incorporated: Zinc stannate Flamtard S provided by William Blythe
(United Kingdom), low melting glass frits Ceepree C200m from Azelis
(Belgium), and the silicone-based additive DowSil 43-821 from Dow
Chemical (USA).

Fig. 2 shows the chemical structure of the resin system and flame
retardants.
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2.2. Specimen preparation

The epoxy resin was preheated to 120°C in a vacuum dissolver
(VMA Getzmann Dispermat, Reichshof, Germany). Subsequently, the
flame retardants were added separately, with each addition followed
by at least 5 min of mixing to ensure a homogeneous dispersion. After
the final flame retardant was added and thoroughly mixed, the curing
agent 4,4’-DDS was introduced and mixed under continuous degassing
until a uniform mixture was achieved.

The formulation was then poured into preheated vertical molds
(3 mm thickness) at 120°C. The curing cycle was carried out in a
convection oven (Memmert ULE 400) and consisted of the following
steps: 1h at 120°C, 3h at 180°C, and a post-curing step of 2 h at 250°C,
all with a heating rate of 3 K/min. Cooling to room temperature was
performed over 12h at a cooling rate of 1 K/min.

2.2.1. Cone calorimetric measurements

Fire testing was carried out on an iCone calorimeter from Fire
Testing Technology Ltd. (East Grinstead, England). According to DIN
ISO 5660, samples measuring 100 mm x 100 mm with 3 mm thickness
are wrapped in an aluminum foil pocket and placed in a metal frame
sample holder, which exposed 88.4 cm? of the sample surface. The
samples were irradiated at a distance of 25 mm with a heat flux of
35 kW/m?. Key fire behavior parameters, including the total smoke
production (TSP), heat release rate (HRR), and average rate of heat
emission (ARHE), were recorded to assess the flame retardancy effects.
The maximum value of ARHE over the duration of the test, referred
to as the MARHE, was used as one of the optimization targets in this
study. To ensure reliable results, at least three samples were measured
for each mixture under identical conditions. In cases where notable
data variability was observed, additional replicates were considered to
enhance the accuracy of the reported values.

2.3. Bayesian optimization of formulations

New formulations were proposed through iterative rounds of BO.
The general procedure of Bayesian Optimization can be described as
follows: First, the objective function to be optimized is defined. A
surrogate model is then selected — in this case, a Gaussian Process
Regressor (GPR) — to approximate the unknown objective function in
a probabilistic manner. GPRs are well suited for this task due to their
ability to model complex relationships, quantify prediction uncertainty,
and provide interpretable outputs.

The GPR predicts the target property of a new formulation based on
its similarity to previously tested samples. This similarity is quantified
using a kernel function; in this work, a radial basis function (RBF)
kernel was employed. The underlying assumption is that similar input
features will yield similar target properties.

In addition to predicting a mean value, the GPR provides an es-
timate of the uncertainty associated with each prediction. This infor-
mation is used in the so-called acquisition function, which evaluates a
large number of virtual samples by combining their predicted means
and uncertainties. The sample with the highest expected utility is
selected as the next candidate for experimental validation. Depending
on whether the predicted value or its uncertainty is prioritized, the
algorithm performs either exploitation or exploration.

In this study, the Expected Improvement (EI) acquisition function
was applied:

(ux) = f(xH) = &) - D(Z) + 6(x) - p(2Z),
if 6(x) > 0 1)
0, otherwise

ElIx) =

where

) - fxH)—¢

o(x)

Z= )
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Table 1

Overview of initial dataset formulations with flame retardant additives.
D AlPi ZnSt DowsSil Ceepree Source

wt.% wt.% wt.% wt.%

A0 0.00 0.00 0.00 0.00 This work
Al 5.00 0.00 0.00 0.00 This work
A2 10.00 0.00 0.00 0.00 This work
A3 20.00 0.00 0.00 0.00 This work
A4 25.00 0.00 0.00 0.00 This work
A5 0.00 0.00 0.00 15.00 This work
L1 10.00 6.50 0.00 0.00 [28]
L2 10.00 0.00 2.00 0.00 [29]
L3 10.00 0.00 0.00 2.00 [49]
L4 10.00 0.00 0.00 10.00 [30]
R1 10.90 2.58 1.28 0.00 This work
R2 6.10 6.85 2.52 0.00 This work
R3 8.74 8.28 1.13 0.00 This work
R4 11.39 7.15 3.56 0.00 This work
R5 11.56 3.24 2.28 1.81 This work
R6 9.48 1.33 1.10 2.14 This work

Here, u(x) is the predicted mean and o(x) the predicted standard
deviation at input x. f(x*) is the best observed function value so far,
and ¢ is a parameter controlling the trade-off between exploration
and exploitation (set to 0.02 in this work). @(Z) and ¢(Z) denote
the cumulative distribution and probability density functions of the
standard normal distribution, respectively.

The GPR hyperparameters and the EI acquisition function param-
eter ¢ = 0.02 were selected based on their proven effectiveness in
closely related multi-objective optimization studies on epoxy resin sys-
tems [48]. These settings have consistently yielded a balanced trade-off
between exploration and exploitation and demonstrated stable con-
vergence without requiring dedicated hyperparameter tuning. In this
study, no additional hyperparameter optimization was performed, as
the primary objective was to evaluate the feasibility and efficiency
of BO in guiding flame-retardant formulation development under con-
strained experimental budgets. The use of pre-validated parameters
ensured comparability with prior results and minimized the risk of
overfitting to the limited dataset.

Based on prior experience with formulation optimization tasks [41,
42], the Expected Improvement function proved particularly effective.

2.3.1. Data preparation

Initial dataset. Before optimizing the target parameters MARHE and
TSP, an initial dataset was generated to serve as the foundation for
regression-based modeling of material behavior. This dataset includes
various formulations to ensure a diverse and well-balanced representa-
tion of material compositions.

The first set of formulations consists of the base resin-hardener sys-
tem and its mixtures with systematically varying the AlPi concentration
to study its sole influence on flame retarding performance. The neat
resin (AO) showed a MARHE of 236 kW /m? and a TSP of 16 m?, serving
as the baseline for comparison with all other formulations. Addition-
ally, four flame-retardant combinations inspired by literature were
incorporated to further expand the dataset. Due to limited available
data on Ceepree-AlPi interactions, a formulation containing 15wt.%
Ceepree was also included.

To further enhance diversity and minimize potential bias, six ad-
ditional compositions were randomly selected from the virtual dataset
(explained in the next section).

Table 1 summarizes the complete list of realized formulations as
part of the initial dataset, categorizing samples based on their type
(AlPi-based A,, literature-derived L,, or randomly selected samples
R).
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Table 2

Compositional constraints for the virtual dataset.
Component Range

(wWt.%)

AlPi 0-20
ZnSt 0-10
DowsSil 0-10
Ceepree 0-15
Total Additives <25

2.3.2. Virtual dataset and boundary conditions

To ensure a comprehensive exploration of the formulation space, a
virtual dataset was created, comprising 10° unique compositions. This
large dataset allows for a more extensive parameter space investiga-
tion and provides an initial foundation for the Bayesian Optimization
process.

The compositional constraints defining the virtual dataset were
carefully chosen to balance fire performance, processability, and ma-
terial feasibility. The constraints are summarized in Table 2.

2.3.3. Optimization procedure

The Bayesian Optimization process was used to iteratively refine
and enhance the predictive precision of the regression model. A
flowchart summarizing the optimization workflow is presented in
Fig. 3, illustrating the stepwise approach used to navigate the formula-
tion space.

2.3.4. Pareto front analysis and sample domination
A Pareto front analysis was performed to balance the optimization
of MARHE and TSP. The Pareto front represents the set of formulations
that achieve an optimal trade-off between these two target properties.
A formulation is considered dominant over another if it has:

» Lower MARHE (better fire performance)
» Lower TSP (less smoke production)

If a formulation F; has both lower MARHE and lower TSP than
another formulation F,, then F; dominates F, and is part of the pareto
front. This concept is illustrated in Fig. 5, which visually maps the
trade-offs between formulations.

2.3.5. Reference model and weight coefficients
To benchmark the BO-driven regression models, a simple linear
reference model was established. The model follows:

f=Zw,~x,~+N

where w; represents the weight coefficient of each flame retardant
component x; and N describes the resin behavior without flame retar-
dant additivation. These coefficients, derived from regression analysis,
provide insights into the influence of each additive:

» Negative coefficients indicate performance improvement.
+ Positive coefficients suggest a detrimental effect on MARHE or
TSP.

By comparing these coefficients with the BO-driven model, the con-
tribution of each additive can be evaluated, guiding future formulation
design.

These regression-based insights into individual flame retardant con-
tributions complement the broader goal of identifying optimal multi-
component formulations. To efficiently search the vast formulation
space and systematically improve fire performance, BO was employed.

BO uses a data-driven, iterative strategy that balances exploration
of new material combinations with the refinement of already promising
regions. The optimization loop—illustrated in Fig. 3—starts with the
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Fig. 3. Flowchart of used Bayesian optimization cycle.

selection of initial random formulations and their experimental valida-
tion. This data is then used to train a Gaussian Process (GP) model,
which not only predicts MARHE and TSP for all virtual formulations,
but also quantifies the uncertainty of each prediction.

The predicted values and associated uncertainties are combined
using an acquisition function—specifically, the maximum expected
improvement (maxEI). This guides the selection of the next most in-
formative formulation to test. By iteratively repeating this process,
the algorithm steers the search toward compositions with increasingly
favorable properties while simultaneously improving its predictive ac-
curacy.

The workflow diagram in Fig. 3 highlights this closed-loop struc-
ture, where experimentation and prediction continuously inform one
another. This combination of machine learning and targeted experi-
mentation proved to be highly effective for navigating the complex,
multi-objective formulation space.

The optimization process consisted of a total of eight experimental
iterations, including five BO cycles and three intermediate uncertainty
sampling steps. The number of cycles was determined by practical con-
straints such as available material quantities, experimental time, and
budget. The procedure was concluded when improvements between
consecutive BO cycles became marginal and the Pareto front did not
show any further significant advancement.

3. Results and discussion

Upon completion of the base dataset, the Gaussian Process regres-
sion model was applied to estimate MARHE and TSP values, along with
associated prediction uncertainties, for all 10 virtual flame-retardant
formulations.

3.1. Reduction of model uncertainty via uncertainty sampling

Given the limited initial dataset, the GP regression model exhibited
high prediction uncertainty (i.e., high variance), particularly for for-
mulations distinct from previously measured samples. To address this,
uncertainty sampling was applied by selecting two compositions — one
for MARHE and one for TSP — with the highest predicted variance in
the Gaussian Process model.

A complete overview of all tested formulations, including their
compositions as well as the measured MARHE, TSP, and PHRR values,
is provided in Table S1 of the Supporting Information.

Table 3

Samples suggested by BO of MARHE/TSP.
D AlPi ZnSt DowsSil Ceepree MARHE TSP

wt.% wt.% wt.% wt.% kW /m? m?

BO1 6.85 0.07 9.99 0.02 164 19
BO2 5.96 0.11 9.83 8.95 163 17
BO3 19.85 4.57 0.07 0.03 128 16
BO4 6.16 8.71 0.15 9.91 153 13
Us3 6.10 2.30 5.10 0.80 160 18

US1 and US2 both featured low AlPi content combined with high
proportions of ZnSt and Ceepree—combinations not yet represented
in the existing dataset. Additionally, US1 included 4.4 wt.% DowsSil,
thereby covering a previously unexplored three-component region
within the formulation space.

Although these samples were not intended for performance opti-
mization, the cone calorimeter measurements revealed consistent fire
behavior. US2 achieved a slightly lower MARHE than US1 (reduced by
approximately 11%), with both samples showing identical TSP values.
Importantly, US2 was located on the fourth Pareto front, indicating
a previously unreached balanced trade-off between MARHE and TSP.
This highlights the effectiveness of uncertainty sampling in identifying
unexplored yet promising regions of the formulation space.

These findings underscore the importance of targeted data acquisi-
tion in underrepresented composition ranges to improve model robust-
ness and support efficient optimization in subsequent iterations.

3.2. Target property optimization of MARHE and TSP by Bayesian opti-
mization

Following the incorporation of uncertainty sampling, the first BO
round was conducted to improve the fire performance metrics MARHE
and TSP. Based on the augmented dataset, two formulations were
proposed—each optimized individually for one of the two target prop-
erties (Table 3).

BO1 aimed to minimize MARHE and comprised 6.9 wt.% AlIPi and
the maximum allowed 10.0 wt.% DowsSil.

BO2, optimized for TSP, included similar AIPi content (6.2 wt.%)
but had a substantially increased Ceepree content (from 0.02 wt.% in
BO1 to 8.95 wt.%), while maintaining a similar DowSil level.

The ZnSt content remained negligible in both cases.
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Table 4 Table 5
Samples suggested by Bayesian optimization of MARHE under TSP constraint. Included samples from scientific intuition and final BO round.
ID AlPi ZnSt DowsSil Ceepree MARHE TSP ID AlPi ZnSt DowsSil Ceepree MARHE TSP
wt.% wt.% wt.% wt.% kW /m? m? wt.% wt.% wt.% wt.% kW /m? m?
BO5 19.83 0.06 0.12 4.90 131 18 SI1 0.00 10.00 0.00 0.00 202 12
BO6 17.07 0.09 7.60 0.12 239 13 SI2 5.00 10.00 0.00 0.00 165 11
BO7 15.28 8.98 0.00 0.00 122 16

Cone calorimeter results showed that neither sample significantly
outperformed the existing data. MARHE values were nearly identical
for both BO1 and BO2, and TSP values showed only a slight improve-
ment in BO2. Consequently, neither formulation qualified for inclusion
in the updated Pareto front.

To enhance model robustness, a third composition was additionally
selected via uncertainty sampling. The new BO suggestions — targeting
MARHE and TSP, respectively — featured almost no DowSil, indicating
that its contribution to performance in this system is limited.

The MARHE-optimized sample from this round contained 19.9 wt.%
AlPi and 4.6 wt.% ZnSt, while the Ceepree content was reduced to a very
small level. This observation aligns with previous findings suggesting
a positive correlation between high AlIPi content and reduced MARHE.
In contrast, the TSP-optimized sample combined moderate AlPi con-
tent (6.2 wt.%) with 9.9 wt.% Ceepree and 8.7 wt.% ZnSt—aligning with
literature reports on the smoke-suppressing effects of ZnSt.

Cone calorimetry confirmed this differentiation: the MARHE-
optimized sample achieved the second-lowest MARHE value thus far
(128 kW/m?), while the TSP-optimized sample recorded a relatively
low TSP of 13m?. The uncertainty sampling point did not contribute
to further improvement in either property but enhanced coverage of
the formulation space.

These results confirm the value of Bayesian optimization for it-
erative formulation improvement and demonstrate the importance of
balancing exploration and exploitation to guide experimental design.

3.3. Bayesian optimization of MARHE under TSP constraint

To simultaneously fulfill the regulatory limits for MARHE and TSP,
the optimization strategy was adapted using the epsilon-constraint
method. Based on the shape of the current Pareto front—resembling
a hyperbolic trade-off it was concluded that MARHE remained the
more critical property to be improved. Consequently, MARHE was
selected as the primary optimization target, while TSP was constrained
to remain below 17m?2. This approach ensures that newly suggested
formulations are located within the desired target region of the result
space, characterized by simultaneously low MARHE and TSP values.

This constraint was applied to the entire virtual dataset by filtering
out all compositions with predicted TSP values above this threshold.
The resulting filtered dataset contained approximately 396 000 samples,
serving as the new search space (virtual dataset) for subsequent BO
rounds.

Two additional BO cycles were performed using this filtered dataset
(Table 4). Both BO5 and BO6 suggested high AlPi contents—19.8 wt.%
and 17.1 wt.%, respectively—confirming the established correlation be-
tween AlPi loading and MARHE reduction. ZnSt was nearly absent in
both formulations, while Ceepree and DowSil were each explored once
as the sole synergist. The flame retardant ratios of AIPi to synergist
varied between 4.0 and 2.2, allowing targeted comparison of their
effects.

Experimental results revealed that BO5 reached a MARHE of
131kW/m?, close to the best values achieved so far. However, its
TSP of 18m? exceeded the defined constraint and disqualified the
formulation from the updated Pareto front. BO6, which relied on
DowSil as synergist, resulted in a substantially higher MARHE of
239kW/m?2, suggesting that DowsSil does not contribute effectively to
MARHE reduction in this system. Its TSP value of 13m? did meet the
constraint.

Neither BOS5 nor BO6 qualified for the updated Pareto front, indicat-
ing that while the epsilon-constraint approach effectively focused the
virtual dataset, further refinement of the data would be required for
continued progress.

3.4. Incorporation of scientific intuition to improve the BO model

Recent BO iterations revealed a stagnation in performance gains,
suggesting that further progress would require refinement of the dataset
itself. To support this, results from earlier cycles were revisited, par-
ticularly the effective MARHE reduction observed in sample BO3,
which combined AlPi with ZnSt. This prompted a hypothesis-driven
investigation into the specific effect of ZnSt as a synergist.

To test this, two new samples were designed and experimentally
validated (Table 5). SI1 contained 10wt.% ZnSt as the sole flame
retardant, while SI2 combined 10 wt.% ZnSt with 5 wt.% AlPi—resulting
in an AlPi:ZnSt ratio of 0.5, identical to that in BO3. These compositions
aimed to isolate and clarify the synergistic potential of ZnSt, especially
in low-AlPi systems.

The results confirmed that ZnSt effectively suppresses smoke forma-
tion. SI1 achieved a TSP of 12 m?, which is significantly below average,
despite containing only 10wt.% total flame retardant. However, its
MARHE was comparable to the neat sample, indicating limited effect
on heat release. SI2, on the other hand, exhibited a further reduction
in TSP to 11 m? and a substantial MARHE improvement to 165 kW /m?.
This confirmed the beneficial interaction between AlPi and ZnSt.

Guided by this insight, a subsequent BO cycle was executed us-
ing the epsilon-constraint method (Table 5). The newly suggested
sample, BO7, combined AlPi and ZnSt and resulted in a MARHE of
122 kW /m?—the lowest value recorded in the entire study. Addition-
ally, it was the first formulation to reduce the peak heat release below
200kW/m?.

This demonstrates that integrating targeted experimental knowl-
edge into the optimization workflow can enhance the efficiency and
accuracy of the BO model. BO7 defines the new optimal formulation
on the final Pareto front, dominating all previous candidates in MARHE
while maintaining acceptable TSP performance.

3.5. Overview of the stepwise optimization progress

The success of the BO strategy is illustrated by tracking the normal-
ized MARHE and TSP values across all experimental iterations Fig. 4.
The values are normalized with respect to the neat reference formu-
lation, enabling a direct comparison of flame-retardant performance.
While early samples — including random and literature-based formula-
tions — showed limited improvement, a clear downward trend in both
metrics emerges following the introduction of BO-guided suggestions.
This reflects the increasing effectiveness of targeted exploration and
model refinement throughout the optimization process.

The evolution of the Pareto front is shown in Fig. 5, highlighting the
shift in optimal trade-offs between MARHE and TSP across different BO
cycles. As new, data-driven formulations were introduced, the Pareto
front progressively moved toward the lower left region of the result
space—indicating simultaneous improvement in both objectives. The
final front includes BO7, which defines the lowest MARHE value in the
dataset while maintaining acceptable TSP performance.

Together, these visualizations underscore the efficiency of the BO
workflow in systematically guiding the experimental design toward the
constrained optimization of MARHE under a TSP bound.



N. Krebs et al.

1.10

H A0 W AIPi B Literature/CP M Random

1.05 - H US B BOMARHE W BOTSP = SI

(norm. MARHE + norm. TSP)/2
IS o o =) -
g & & & 8
1 1 1 1 1

0.75

Linear trendline f

0.70 T T T T T

# Experiment

Fig. 4. Normalized development of MARHE and TSP in course of the optimiza-
tion. The dashed dark green line shows the linear trend during optimization.

260
—— 1™ pareto front
nd
240 .- . —!— 2.-(1 pareto front
A0 ~—— 3" pareto front
—— 4™ (final) pareto front
220 ® dominated samples
(3]
3
= 200 4 g
~2
E ® US1
T 180 1 [}
% US2
= 160 - - A T
° Us3
BO4 Y
140 - e _® o® .
LI.I‘_.} L ®
120 1
BO7
T T T T T T T T
10 12 14 16 18 20 22 24
TSP/ m?

Fig. 5. Evolution of the Pareto front in the MARHE-TSP objective space.
Each color represents a different stage of the optimization process. Black dots
indicate dominated samples not part of the Pareto front.

3.6. Detailed fire behavior analysis of selected formulations

To deepen the understanding of flame-retardant mechanisms be-
yond aggregated performance values, selected formulations from the
Pareto front were analyzed in detail using further data from cone
calorimetric analysis. The temporal profiles of heat release and smoke
production provide insight into the interplay between the applied flame
retardants.

Optimized formulations — especially BO7, containing AlPi, ZnSt, and
CP - show a delayed and flattened fire development. This is evident in
the heat release rate (HRR) profile (Fig. 6), which demonstrates signif-
icantly reduced peak intensities and a prolonged growth phase. Such
behavior indicates efficient flame inhibition and increased thermal
stability under fire conditions.

While AlPi effectively lowers MARHE, it tends to increase TSP. ZnSt,
in contrast, has a pronounced smoke-suppressing effect. CP comple-
ments this by acting as a barrier former, further reducing the heat
release. The combined effect of ZnSt and CP results in lower TSP
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without compromising heat emission behavior, as visualized in the TSP
and smoke production rate (SPR) curves (Fig. 7).

For instance, BO7 achieved a MARHE of 122kW/m? and a TSP of
16m?, balancing both performance metrics within acceptable limits.
These observations confirm the value of synergistic multi-component
systems: AlPi governs heat release, ZnSt suppresses smoke, and Ceepree
enhances residue formation. Their combined use allows for improved
efficiency at lower total loadings, supporting processability and ma-
terial integrity in application-specific formulations. To gain deeper
insight into the underlying flame-retardant mechanisms, selected for-
mulations were examined after combustion, focusing on the morphol-
ogy of the resulting char residues. A comparison of representative
samples revealed three distinct types of char formation, each associated
with different fire performance profiles.

In the neat resin (A0), combustion left behind only a fragmented and
porous residue without any coherent protective layer, with a residue
yield of 33%. This insufficient barrier formation is directly reflected in
high MARHE values and average TSP results, highlighting the limited
intrinsic flame resistance of the base resin. In contrast, US1, a CP-
rich formulation with low AlPi content, formed a dense and stable
char layer with a smooth and unbroken surface, corresponding to a
residue yield of 49%. This melt-derived barrier remained mechanically
intact after combustion and effectively suppressed smoke evolution.



N. Krebs et al.

Fig. 8. Residual char layer of sample AO (a), US1 (b) and BO7 (c) after cone
measurement.

Table 6
Linear regression coefficients for the influence of
each flame retardant on MARHE and TSP.

FR MARHE TSP
AlPi —-188 +7
ZnSt -36 —17
DowSil +71 0
CcpP +29 -9
ko 159 16

A third and particularly effective type of residue was observed in
BO7, which combines AIPi and ZnSt. This formulation produced a
voluminous, intumescent char that expanded during combustion, with a
residue yield of 50%. The resulting structure provided strong insulation
and radical quenching effects, leading to the lowest MARHE values
observed in the study.

A visual impression of the degraded residues is shown in Fig. 8.

These observations demonstrate that the type and quality of char
formation critically determine the balance between heat release sup-
pression and smoke development. A stable and continuous barrier
promotes low smoke generation, while intumescence enhances thermal
shielding but may compromise smoke performance.

4. Linear regression analysis

To assess the influence of individual flame retardants on the key
fire performance parameters, a multiple linear regression (MLR) was
applied to the whole dataset. The goal of this simplified model was not
to predict target properties with high accuracy, but rather to extract
general trends and directionality in the influence of each component.

The regression follows the general form:

Y =ko+kawpi - Xapi + Kzast - Xzast
+ kpowsil - *powsil + kcp - Xcp 3

where y is the target property (either MARHE or TSP), x; is the mass
fraction of flame retardant i, and k; are the corresponding regression
coefficients. The intercept k, represents the baseline property of the
material without any flame retardant (i.e., formulation A0). Prior to
regression, all input variables were standardized using a z-score trans-
formation (StandardScaler) to ensure comparability of coefficients and
to eliminate scale bias.

The resulting regression coefficients for MARHE and TSP are sum-
marized in Table 6. Negative values indicate a reducing effect on
the respective target value, whereas positive values correspond to an
increase.

Detailed regression plots for MARHE and TSP are provided in the
Supporting Information as Figs. S1 and S2, respectively.

The results confirm several trends already observed during the
optimization. AlPi and ZnSt both contributed to a reduction in MARHE,
with AlPi having the strongest impact. However, AlPi also increased
TSP, in contrast to ZnSt, which showed the most significant smoke-
suppressing effect. CP and DowSil were found to influence MARHE
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negatively in the linear model, indicating that they are not suitable for
use as flame retardants in this resin system to reduce MARHE.

The suitability of the linear regression was evaluated by compar-
ing predicted and measured values. The respective correlation plots
for MARHE and TSP are provided as Supporting Figures. While the
general trends are captured, the scatter in the plots illustrates the
limitations of a purely linear model, especially for compositions with
strong synergistic behavior.

This analysis supports the interpretation of the BO results and
provides a straightforward summary of how each flame retardant con-
tributes to heat release and smoke production in isolation.

5. Conclusion

This study successfully demonstrates the application of Bayesian
Optimization as an efficient and data-driven methodology to enhance
flame-retardant performance in high-T, epoxy resin systems. By inte-
grating machine learning with targeted experimental validation, the
multicomponent optimization of aluminum diethyl phosphinate (AlPi)
in combination with synergists — zinc stannate (ZnSt), a silicone-based
additive (DowsSil), and a low-melting glass frit (Ceepree) — was achieved
in a resource-efficient manner.

The BO workflow enabled the identification of complex, non-linear,
and synergistic effects between the additives, which would be difficult
to uncover via traditional trial-and-error approaches. Notably, ZnSt
emerged as a key synergist for smoke suppression, while AlPi remained
the principal agent for reducing heat release. The optimized formu-
lation BO7, combining AlPi and ZnSt, delivered the lowest recorded
MARHE (122kW/m?) and simultaneously fulfilled smoke production
constraints, defining a new Pareto-optimal front.

This research highlights the potential of Bayesian Optimization not
only as a powerful tool for flame-retardant formulation development
but also as a broadly applicable strategy for accelerating the design of
high-performance, halogen-free, and sustainable polymer systems.
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