Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Application of convolutional neural networks and ensemble methods in the fiber volume content analysis of natural fiber composites

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008759
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8759-0

Titelangaben

Rothenhäusler, Florian ; Albuquerque, Rodrigo Queiroz ; Sticher, Marcel ; Kuenneth, Christopher ; Ruckdaeschel, Holger:
Application of convolutional neural networks and ensemble methods in the fiber volume content analysis of natural fiber composites.
In: Machine Learning with Applications. Bd. 19 (2025) . - 100609.
ISSN 2666-8270
DOI der Verlagsversion: https://doi.org/10.1016/j.mlwa.2024.100609

Volltext

[thumbnail of 1-s2.0-S2666827024000859-main.pdf]
Format: PDF
Name: 1-s2.0-S2666827024000859-main.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY-NC-ND 4.0: Namensnennung, nicht kommerziell, keine Bearbeitung
Download (2MB)

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Abstract

The incorporation of natural fibers into fiber-reinforced polymer composites (FRPC) has the potential to bolster their sustainability. A critical attribute of FRPC is the fiber volume content (FVC), a parameter that profoundly influences their thermo-mechanical characteristics. However, the determination of FVC in natural fiber composites (NFC) through manual analysis of light microscopy images is a labor-intensive process. In this work, it is demonstrated that the pixels from light microscopy images of NFC can be utilized to predict FVC using machine learning (ML) models. In this proof-of-concept investigation, it is shown that convolutional neural network-based models predict FVC with an accuracy required in polymer engineering applications, with a mean average error of 2.72 and an R2 coefficient of 0.85. Finally, it is shown that much simpler ML models, non-specialized in image recognition, besides being much easier and more efficient to optimize and train, can also deliver good accuracies required for FVC characterization, which not only contributes to the sustainability, but also facilitates the access of such models by researchers in regions with little computational resources. This study marks a substantial advancement in the area of automated characterization of NFC, and democratization of knowledge, offering a promising avenue for the enhancement of sustainable materials.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Flax fibers, Sustainability, Machine learning, Image detection, Natural fiber composites, CNN
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe > Lehrstuhl Polymere Werkstoffe - Univ.-Prof. Dr.-Ing. Holger Ruckdäschel
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8759-0
Eingestellt am: 16 Dec 2025 14:25
Letzte Änderung: 16 Dec 2025 14:27
URI: https://epub.uni-bayreuth.de/id/eprint/8759

Downloads

Downloads pro Monat im letzten Jahr