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A B S T R A C T

The incorporation of natural fibers into fiber-reinforced polymer composites (FRPC) has the potential to
bolster their sustainability. A critical attribute of FRPC is the fiber volume content (FVC), a parameter that
profoundly influences their thermo-mechanical characteristics. However, the determination of FVC in natural
fiber composites (NFC) through manual analysis of light microscopy images is a labor-intensive process. In
this work, it is demonstrated that the pixels from light microscopy images of NFC can be utilized to predict
FVC using machine learning (ML) models. In this proof-of-concept investigation, it is shown that convolutional
neural network-based models predict FVC with an accuracy required in polymer engineering applications, with
a mean average error of 2.72% and an 𝑅2 coefficient of 0.85. Finally, it is shown that much simpler ML models,
non-specialized in image recognition, besides being much easier and more efficient to optimize and train, can
also deliver good accuracies required for FVC characterization, which not only contributes to the sustainability,
but also facilitates the access of such models by researchers in regions with little computational resources. This
study marks a substantial advancement in the area of automated characterization of NFC, and democratization
of knowledge, offering a promising avenue for the enhancement of sustainable materials.
1. Introduction

Fiber-reinforced polymer composites (FRPC) find extensive use in
automotive, wind energy generation, and aerospace applications, pri-
marily due to their high weight-specific Young’s modulus and strength
(Ashby, 1992; Ehrenstein, 2006), which are attributed to the reinforc-
ing fibers (Flemming et al., 1995; Schürmann, 2007). Traditionally,
synthetic fibers such as glass and carbon have been utilized as rein-
forcements for FRPC. The production of these fibers involves substantial
energy consumption, leading to relevant CO2 emissions (Das, 2011).
In contrast, plant-based fibers require less energy for production and
processing (Bos, 2004). Additionally, natural fibers are biodegradable,
presenting an environmentally friendly alternative to glass and carbon
fibers. Plant-based fibers, like flax and hemp, also have lower den-
sity and cost compared to synthetic fibers (Bledzki & Gassan, 1997).
However, plant-based fibers exhibit lower strength and modulus than
synthetic fibers (Flemming et al., 1995). Despite this, they can be a
sustainable alternative in applications where the highest strength and
modulus are not essential.
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The mechanical properties of FRPC, influenced by factors such as
fiber length (Fu & Lauke, 1996; Gupta et al., 1989), fiber orienta-
tion (Chin et al., 1988; Fu & Lauke, 1998), and fiber volume content
(FVC) (Affdl & Kardos, 1976), are crucial in diverse engineering con-
texts. The FVC, denoting the ratio of fiber volume to the total volume in
a FRPC (Schürmann, 2007), is particularly integral in determining spe-
cific mechanical properties (Voigt, 1889) and is expressed by Eq. (1):

𝐹 𝑉 𝐶 =
𝑉f iber

𝑉composit e
(1)

For composites reinforced with glass or carbon fibers, FVC analy-
sis is typically conducted through techniques like thermo-gravimetric
analysis (TGA) (DIN EN ISO 1172:1998-12, 1998; Grund et al., 2019),
density measurements (Abdalla et al., 2008), computed tomography
(CT) (Hessman et al., 2019), or light microscopy (LM) (Jock, 1986).
However, natural fiber composites (NFC) pose challenges due to their
organic nature, low thermal stability, and characteristic hollow
structure (Kumar et al., 2022; Mwaikambo & Ansell, 2001). Analysis
https://doi.org/10.1016/j.mlwa.2024.100609
Received 23 September 2024; Received in revised form 15 November 2024; Accept
vailable online 2 December 2024 
666-8270/© 2024 The Authors. Published by Elsevier Ltd. This is an open access art
c-nd/4.0/ ). 
ed 26 November 2024

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/mlwa
https://www.elsevier.com/locate/mlwa
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
https://github.com/Polymer-Engineering-University-Bayreuth/FiberVolumeContent_ConvNet
mailto:florian.rothenhaeusler@uni-bayreuth.de
mailto:rodrigo.q.albuquerque@uni-bayreuth.de
mailto:marcel.sticher@uni-bayreuth.de
mailto:christopher.kuenneth@uni-bayreuth.de
mailto:holger.ruckdaeschel@uni-bayreuth.de
https://doi.org/10.1016/j.mlwa.2024.100609
https://doi.org/10.1016/j.mlwa.2024.100609
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2024.100609&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


F. Rothenhäusler et al.

n
p
c
o
L
p

t
w
f
u

F

h
s
t
m

3
u
r
𝑅
T
C
c
t

L
w
n
m
e

a
e
N
a
i

e
o
l
1

f
D
e
G
o
C

F
i

c

1

R
a
2
T
i
K

c
4
g

l
w
w
u
i
c

(
u
g
t
i

Machine Learning with Applications 19 (2025) 100609 
methods such as TGA may be hindered by the low thermal stability of
atural fibers, especially when additives with low thermal stability are
resent in the matrix. Similarly, the hollow structure of natural fibers
omplicates FVC determination through density measurements, and the
rganic nature makes precise CT detection challenging. Consequently,
M analysis of polished cross-sections of unidirectional NFC is often
referred.

Manual analysis of LM images via image processing software proves
o be laborious and time-intensive. In contrast, artificial neural net-
orks (ANN), such as convolutional neural networks (CNN), offer a

aster and precise alternative once properly trained (Andrade & Ed-
ardo, 2011; Chauhan et al., 2018). Previous applications of neural

networks have demonstrated substantial reductions in workload, exem-
plified in defect detection in metal screws and the inline assessment
of part porosity in thermoplastic polymers produced via powder-based
additive manufacturing (Schlicht et al., 2022; Song et al., 2018).

Different machine learning (ML) models have been used to model
mechanical properties of polymer composites, as highlighted in the
recent review by Sorour et al. (2024). Machello et al. (2024) trained de-
cision tree-based models using features like the exposure temperature,
𝑇g and sample thickness to predict the tensile strength retention of a
RPC material, achieving 𝑅2 of 0.88–0.96 for the test set. Osa-Uwagboe

et al. (2024) screened several ML models that used quasi-static inden-
tation data as features to predict damage properties in FRPC materials,
achieving 𝑅2 larger than 0.98 for the test set. Shokrollahi et al. (2023)
ave employed deep CNNs to predict local stress fields within 2D
lices of composite microstructure images, revealing that this ML-based
echnique can be an alternative to costly force electron microscopy
easurements.

The importance of determining FVC via ML models and image
recognition lies in their much faster, cheaper and more sustainable
nature as compared to traditional destructive methods. To the best of
our knowledge, no paper has been found describing the use of ML
models to determine FVC of natural fiber composites from LM images.
However, one paper has been found describing the use of CNN models
to determine FVC of carbon fiber composites (Blarr et al., 2024) from
D CT images. This model exhibited high variance and was trained
sing a very small experimental data set (14 samples) with a small
ange of FVC (22%–29%), and the trained CNN showed a very low
2 score of −0.11, which is apparently related to the training error.
he current investigation reveals that it is possible to train an accurate
NN model with a FVC range five times larger and still get high 𝑅2

oefficients and small errors for the prediction of this property on both
he training and test sets.

This proof-of-concept study aims at demonstrating that pixels from
M images of NFCs can be used to train CNN models to predict FVC
ith accuracies good enough for being used in usual polymer engi-
eering applications. It is also shown that comparatively simpler ML
odels like the eXtreme Gradient Boosting (XGBoost), which are much

asier and faster to optimize and train, but which are not specialized
in image recognition problems, can also predict FVC and deliver an
ccuracy equally acceptable for FVC characterizations found in polymer
ngineering problems. Both models are trained using LM images of an
FC produced through the hand-layup process involving flax fibers and
n epoxy resin matrix. Afterwards, the performance of the ML models
s improved by employing ensemble techniques.

2. Methods

2.1. Materials

The diglycidyl ether of bisphenol F (DGEBF) utilized in this study,
xhibiting an epoxide equivalent weight (EEW) of 169 g mol−1, was
btained in the form of Epilox F17-00 from LEUNA-Harze GmbH,
ocated in Leuna, Germany. The diglycidyl ether of bisphenol A (EEW =
87 g mol−1) was sourced from Blue Cube Assets GmbH & Co. KG, Olin
2 
Epoxy, based in Stade, Germany. The Heloxy modifier BD was procured
rom Westlake Epoxy GmbH, headquartered in Duisburg, Germany.
iethyl toluene diamine (DETDA), characterized by an active hydrogen
quivalent weight of 44.57 g mol−1, was provided by Schill+Seilacher
mbH, situated in Böblingen, Germany, and was supplied in the form
f Polyvertec®H81. Jeffamine®D-230 was obtained from Huntsman
orporation, located in Salt Lake City, US.

For the natural reinforcement component, non-crimp flax fabric
USE 200 FLX was employed, sourced from SachsenLeinen GmbH
n Markkleeberg, Germany. FUSE 200 FLX comprises unidirectional,

non-twisted yarns bound together by a thermoplastic fiber binder,
onstituting approximately 5% of the total fabric weight.

2.2. Resin formulation & laminate curing

DGEBF and DETDA were weighed in so that the stoichiometric ratio
between the active hydrogen atoms in DETDA to the epoxy groups in
DGEBF is equal to one. The blending of DGEBF and DETDA involved
the utilization of a centrifuge speed mixer from Hauschild Engineering,
located in Hamm, Germany, operating at 3000 min−1 for a duration of
120 s.

Flax fibers, cut to lengths of 10 cm, were manually impregnated
with the resin. After aligning the fibers uni-directionally and placing
them within a vacuum bag (maintained at approximately 1 mbar), the
composite underwent curing in a Memmert ULE 400 convection oven
from Memmert GmbH + Co. KG, based in Schwabach, Germany. The
curing process consisted of one hour at 120 ◦C followed by three hours
at 160 ◦C. Subsequently, the composite was gradually cooled to room
temperature over a 4-h duration.

The resulting composite was then sectioned into pieces measuring
5 mm by 15 mm using a Mutronic DIADISC5200 diamond plate saw

from MUTRONIC Präzisionsgerätebau GmbH & Co. KG, located in
ieden am Forggensee, Germany. These specimens were embedded in
 matrix composed of DGEBA, Heloxy modifier BD, and Jeffamine®D-
30, maintaining a stoichiometric ratio between the functional groups.
he embedding matrix underwent a curing process lasting 12 h at 40 ◦C

n a Memmert ULE 400 convection oven from Memmert GmbH + Co.
G.

2.3. Grinding & polishing

The preparation of specimens involved grinding and polishing pro-
edures using a Struers RotoPol-21 equipped with a Struers RotoForce-
, both provided by Struers GmbH in Ottensoos, Germany. For the
rinding process, silicon carbide papers from Struers with varying grain

sizes ranging from 68 μm to 10 μm were employed. Each grinding step,
asting 10 min, applied a force of 10 N to each specimen. The specimens
ere rotated in the opposite direction to the silicon carbide papers,
hich rotated at 300 rpm. Subsequently, polishing was carried out
sing a diamond dispersion featuring 6 μm grain sizes, with the spec-
mens rotating at 150 rpm under a force of 5 N. The final step involved
leaning the specimens in an ultra-sonic bath utilizing de-ionized water.

2.4. Light microscopy

The analysis of the composite’s cross-section was conducted using
a Leica DM 6000M microscope from Leica Microsystems GmbH in
Wetzlar, Germany, equipped with a lens providing 50 times magni-
fication. The resulting images had dimensions of 200 μm by 150 μm
width × height). Gray scale images were captured in bright field mode,
tilizing a brightness setting of 85%, exposure time of 16.8 ms and a
amma value of 1.3. The images were randomly acquired throughout
he entire cross-section of the NFC and saved as TIFF files. Exemplary
mages are presented in Fig. 3(a). The distribution of FVC across all 290

recorded images is illustrated in Fig. 3(b).
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2.5. Image analysis

The analysis of LM images was conducted using a routine pro-
grammed in ImageJ image processing software (ImageJ 2.14.0/1.54f).
However, automated processing was hampered by inhomogeneous il-
lumination of the images due to the light microscopes’ illumination
setup. The light cone renders the center of the image darker than the
border areas resulting in problems in setting the threshold between gray
scale values of matrix and fibers. Therefore, an artificial background
was created beforehand by overlaying several areas of images where no
fibers are present to obtain an image with only matrix. On this image a
Gaussian blur filter was applied using ImageJ with a sigma (radius) of
100 to average over local gray value fluctuations. The image processing
routine performs the following steps:

1. Directory: creating a directory where the raw images are stored,
one where the processed images are going to be stored and
inquiring an artificial background. The filenames are stored in
a list and a for loop iterates in the range of the length of the list,
i.e. over all files.

2. Background correction: subtracting background from raw im-
ages and saves the result in 5_ramps LUT (pseudo-color im-
age look-up tables) (ImageJ, 2023) to check the illumination
homogeneity.

3. Enhance contrast: increasing contrast by normalization and
equalization of pixel gray value histogram with saturated pixels
set to 0.1%.

4. Thresholding: setting a threshold by localizing the local mini-
mum between the fiber and the matrix peak in the gray scale
histogram using the ‘minimum’ algorithm. Results in a binary
image with white features and black background (matrix), which
is saved.

5. Denoising: The despeckle tool is applied iteratively to eliminate
artifacts.

6. Eroding and Dilating: Erodes (removes pixels) and dilates (adds
pixels) all features (white) in the binary image using the same
number of iterations for both operations. This removes features
that measure only few pixels in at least one dimension, e.g. grind
marks and dust, while retaining the shape and size of larger
structures, i.e. the fibers.

7. Measure: The area fraction (% of white pixels) of the binary
image is measured and appends it together with the filename
to a list.

8. Overlay: The original image and the binary image are overlaid
and flattened. The resulting image is converted to 8-bit for-
mat and saved. The image processing efficacy was assessed by
visually evaluating the mapping accuracy of the overlay images.

This standardized procedure was consistently applied to all images
analyzed (see Fig. 1). In this context, FVC was quantified through image
analysis, where Eq. (2) expresses the ratio of pixels corresponding to
fibers (white) to the total number of pixels in the image:

𝐹 𝑉 𝐶 =
𝑛f iber
𝑛t ot al

(2)

The unmodified 16-bit .tiff images, along with the calculated FVC, were
provided as input to the CNN.

2.6. Convolutional neural network

Background. CNNs are an special type of neural networks specialized
in image recognition. It basically works as follows. A small patch, typ-
ically of size 3 by 3 neurons, slides over the original image, operating
on the current nine pixel intensities (𝐼𝑖) that fall inside this patch,
according to

𝜎(𝑤1𝐼1 +𝑤2𝐼2 +⋯ +𝑤9𝐼9 + 𝑏) (3)

3 
Fig. 1. Exemplary image during various stages of the analysis.

where 𝑤𝑖’s are weight coefficients which are kept constant each time
the patch slides over the image, and 𝑏 is an added bias (a constant). The
result of this operation is sent through an activation function (here, the
sigmoid function, 𝜎), so that a final number (or output) is generated.
In Eq. (3), 𝜎(𝑥) is given by

𝜎(𝑥) = 1
1 + 𝑒−𝑥

(4)

In Eq. (4), a number between zero and one is generated, which is
associated with the probability of detecting a specific pattern. Each
time the patch slides to a different location, it processes nine different
neurons and a different output is generated, which is stored in the so-
called feature map. Each convolutional layer can have many feature
maps corresponding to the detection of different (local or global) pat-
terns. Local patterns are detected in the first convolutional layers, while
global patterns are detected after more convolutional layers have been
applied. The last convolutional layer is in general flattened, i.e., all
neurons are depicted as a very long 1D vector instead of many (2D)
planes of neurons. Following some fully-connected layers of neurons,
each with different weight coefficients and activation functions, a final
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Fig. 2. Optimized architecture of the CNN model. The number of neurons in each layer is shown in parenthesis (except for the dropout layer), where (a,b,c) = (height, width,
number of filters). A batch of 24 samples and the MSE loss function were used. Total number of trainable parameters = 432,301.
layer called output layer is used to predict the final property (FVC).
Because each feature map has been generated using the same few
weight coefficients, CNNs are not fully-connected neural networks and
have therefore much less parameters than fully-connected NNs, which
renders the former more computationally efficient towards complex
tasks involving image recognition.

Dataset and preprocessing. All microscopy images were used in gray scale
and had resolution of 256 × 192 pixels (width × height), besides being
normalized to have their pixel intensities in the range of [0,1]. The
dataset, composed of 290 images, was split into training set (80% of
data or 232 images) and test set (58 images) using the train_test_split
function of the sklearn package and the default random seed number
(of 42) shown in the documentation. The training set was augmented
to 2552 images (10 augmented images per original image), where
each original image was either rotated (5–15 degrees), horizontally or
vertically flipped, or horizontally or vertically translated (up to 60% of
the total width). During the rotations, the pixels leaving the area of the
image were re-inserted to preserve FVC. The features used to train the
ML models were the pixel intensities, while the manually determined
FVC (see Section 2.5) was used as the target property. Standardization
was used to preprocess FVC.

Metrics. The CNN model was evaluated via the mean absolute error
(MAE , see Eq. (5)), mean absolute percentage error (MAPE , see Eq. (6)),
mean squared error (MSE , see Eq. (7)), and the 𝑅2 score (see Eq. (8)),
which are given by:

𝑀 𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
∣ 𝑦𝑖 − 𝑦̂𝑖 ∣ (5)

𝑀 𝐴𝑃 𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

|

|

𝑦𝑖 − 𝑦̂𝑖
𝑦𝑖

|

|

|

|

× 100 (6)

𝑀 𝑆 𝐸 = 1
𝑛

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2 (7)

𝑅2(𝑦, 𝑦̂) = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
(8)

where 𝑛 is the number of samples, 𝑦𝑖 and 𝑦̂𝑖 are the true and predicted
target property for sample 𝑖, respectively, and 𝑦̄ is the average target
property.

Model optimization. The CNN model was created using tensorflow
(Abadi et al., 2015) and Python 3. The hyperparameters were optimized
4 
using the optuna library (Akiba et al., 2019), which minimized the
average MAE evaluated via 5-fold cross validation using only the
training set. The following hyperparameters were optimized: total
number of convolutional layers (1–5), number of feature maps in each
convolutional layer (2–128), activation function (‘‘sigmoid’’, ‘‘relu’’,
‘‘selu’’ and ‘‘tanh’’), batch size (4–128), size of the dropout layer (0–
50%), patch kernel sizes (3 × 3 or 5 × 5) and the loss function used to
train the model (‘‘mae’’ or ‘‘mse’’). The ADAM optimizer was adopted
here. Early stopping and a dropout layer were used in the model to
try to minimize overfitting. The final optimized architecture of the
CNN model is shown in Fig. 2. After the hyperparameter optimization,
a fresh CNN model was trained using the whole training set and
predictions were performed on the test set.

Comparison with other models. There are numerous state-of-the-art CNN-
based models, such as those from the ResNet (He et al., 2016), VG-
GNet (Simonyan & Zisserman, 2015), and Inception Networks (Szegedy
et al., 2016) families, that have the potential to outperform the vanilla
CNN model explored in this study. However, the primary aim of this
proof-of-concept investigation is not to exhaustively maximize accuracy
by employing these complex models through transfer learning. Given
that the accuracy achieved — especially in the ensemble model pre-
sented in the results — already meets the requirements for polymer
engineering, we opted to compare the vanilla CNN model with simpler
ML models that are not specialized in image recognition tasks. These
simpler models are significantly faster, easier to optimize, and much
more efficient to train, making them a viable alternative for predicting
FVC in regions with limited computational resources. Additionally, the
efficiency in training these simpler models contributes to higher sus-
tainability. The XGBoost (eXtreme Gradient Boosting Chen & Guestrin,
2016) model was then chosen for this model comparison, as it was
the only simple ML model showing a good prediction on the test
set. XGBoost is a highly popular and powerful ML algorithm utilized
for supervised learning tasks, particularly in predictive modeling and
classification problems. It belongs to the ensemble learning family,
which involves combining the predictions of multiple individual models
(here, decision trees), to create a stronger and more accurate final
model. XGBoost employs gradient boosting to construct a sequence
of decision trees, where each tree corrects the errors made by its
predecessor using gradient descent optimization. This algorithm has
L2 (or Ridge) regularization by default for help minimizing overfitting,
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and parallel and distributed computing for speed and efficiency. In the
present work, the number of estimators (or trees), the learning rate,
the maximum depth of each tree, and the L1 and L2 regularization
parameters were optimized via a grid search using the training set and a
5-fold cross-validation approach. As XGBoost is not specialized in image
recognition, the pixels of the 2D images were first flattened to a long
1D vector of 49 152 components and every fifth component (or pixel) of
this vector was used for training and testing the model, as this is known
to increase the model efficiency (Albuquerque et al., 2024). After the
hyperparameter optimization, a fresh XGBoost model was trained using
the whole training set and predictions were performed on the test set.

Ensemble model. The predictions from the CNN and XGBoost models
were used to train an ensemble model, as this approach has been
successfully used to improve ML models in the past (Albuquerque
et al., 2022; Meier et al., 2022). The linear combination of the FVC
predictions from the CNN model (≡ 𝐹 𝑉 𝐶𝐶 𝑁 𝑁 ) and XGBoost model
(≡ 𝐹 𝑉 𝐶𝑋 𝐺 𝐵 𝑜𝑜𝑠𝑡) extracted from Fig. 4ac, is given by:

𝐹 𝑉 𝐶𝑒𝑛𝑠 = 𝑤1 ⋅ 𝐹 𝑉 𝐶𝐶 𝑁 𝑁 +𝑤2 ⋅ 𝐹 𝑉 𝐶𝑋 𝐺 𝐵 𝑜𝑜𝑠𝑡 (9)

where 𝑤1 and 𝑤2 are the coefficients of the linear combination and
𝐹 𝑉 𝐶𝑒𝑛𝑠 is the final ensemble prediction. These coefficients are op-
timized by minimizing the error between 𝐹 𝑉 𝐶𝑒𝑛𝑠 and the true FVC
(≡ 𝐹 𝑉 𝐶 𝑡𝑟𝑢𝑒) for the training set. The loss function defined by Eq. (10)
being minimized, 𝐿, is defined as:

𝐿 = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

𝐹 𝑉 𝐶 𝑡𝑟𝑢𝑒(𝑖) − 𝐹 𝑉 𝐶𝑒𝑛𝑠(𝑖)
|

|

|

(10)

where the index i refers to each of the N samples of the training set.

3. Results and discussion

Fig. 3 shows representative LM images, exhibiting various FVCs.
The flax fibers have a polygonal shape and are about 10 to 20 μm
in diameter. Through the irregular hand-layup of flax fibers and the
randomized locations in which images were taken, there is a broad
range of local FVCs in the composite. This is ideal for training a CNN
because the training set contains a wide variety of different input
values. Another consequence of the composite preparation and image
generation process is that the FVC shows an almost bell-shaped prob-
ability distribution function (see blue line in Fig. 3(b)). The minimum
and maximum FVCs are about 5.9% and 54.8%, respectively. The mean
and median FVCs are 28.3% and 28.6%, respectively, with a standard
deviation of 8.8%. The distribution of FVC covers a wide range of
values that are relevant for composites for load-bearing applications.
The mean FVC is comparable to the FVC of other composites produced
via hand-layup. The data set is representative of FVC that might be
achieved in industrial applications and is suitable for the training of
ML models (Gandhi et al., 2020; Mallick, 2007).

The CNN has 420,801 trainable parameters, and uses five 2D convo-
lutional layers and three fully connected layers before the output layer
(the optimized hyperparameters are shown in Fig. 2). The number of
convolutional layers was also tuned by hyperparameter optimization
(see Section 2). Fig. 4(a) shows the training error of the optimized
CNN model, where the model was first trained with the training set
and then used to predict FVC on the same training set. A small MAE
error was obtained, as well as a good 𝑅2 score. The same trained model
still performed well on the test set, showing little overfitting, as the
test error (2.89) was only a bit worse than the training error (1.76).
Fig. 4(b) shows that the CNN model generalizes well and can reliably
predict FVC using new LM images with a relatively small error. Note
that the test set contains only original (non-augmented) images, which
were never seen before by the trained CNN model.

The best hyperparameters found for the XGBoost model were:
n_estimators = 100, learning_rate = 0.2, max_depth = 3, reg_alpha =
0.5, reg_lambda = 0.01. Even though regularization and a small tree
depth were used, which are also supposed to decrease overfitting by
5 
Fig. 3. (a) Representative LM images of the studied samples are depicted, showcasing
various FVCs. The fibers, represented in dark gray, are oriented perpendicular to
the plane of observation, while the epoxy matrix is represented in light gray. (b)
The distribution of FVC values is presented in a bar graph, with the kernel density
estimation illustrated as a blue line. These visualizations are derived from the analysis
of 290 LM images employed in this study. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

decreasing the model complexity, the XGBoost model still exhibited
some overfitting, as the training error shown in Fig. 4(c) is somehow
smaller than the test error (Fig. 4(d)). Interestingly, the prediction
performance on the test set is still acceptable, considering that XGBoost
is not specialized in image recognition, that only every fifth pixel
was used, and that many images were rotated or translated (via data
augmentation), which makes more difficult to use flattened pixels for
predicting FVC. The simplest model generally used as reference (least
squares model) was not able to predict FVC.

The full performance evaluation for both ML models for the training
and test sets are compared in Table 1. The comparison of the MSE
and MAPE errors for the training and test sets of both investigated ML
models also confirms the overfitting trend discussed above. Both the
XGBoost and CNN models have similar degree of overfitting, but the
absolute errors are considerably smaller for the latter.

The optimized ensemble model had 𝑤1 = 0.671 and 𝑤2 = 0.362
as final parameters (see Eq. (9)) and showed a considerably better
performance on the test set, as revealed in Fig. 5. For instance, the 𝑅2
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Fig. 4. Model evaluation using the training (2552 original + augmented images) and test (58 original images) sets employing the optimized CNN and XGBoost models for the
prediction of FVC. Every 5th image from the training set is plotted for clarity.
Fig. 5. Model evaluation using the training (2552 original + augmented images) and test (58 original images) sets employing the ensemble model (Eq. (9) with 𝑤1 = 0.671 and
𝑤2 = 0.362) for the prediction of FVC. Every 5th image from the training set is plotted for clarity.
score increased from 0.81 (CNN model) to 0.85 (ensemble model) for
the test set. The larger value of 𝑤1 means that predictions from the
CNN model are considerably more important than that of the XGBoost
to calculate the final ensemble prediction. This happens because the
ensemble model (optimized with the training set) had much smaller
MAE error for the CNN model compared to the XGBoost model. The full
metrics calculated for the ensemble model are also shown in Table 1 for
6 
both the training and test sets, from where the superior performance of
this model can be seen.

An error analysis has been performed for the ensemble model
predictions carried out on the training and test sets since this model
showed the highest accuracy. Fig. 6(a) shows histograms (vertical bars)
of the predicted FVC for both the training and test sets using the
ensemble model where each distribution has also its own kernel density
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Fig. 6. (a) Histograms of ensemble predictions on the training and test sets (bars),
each with its own Kernel Density Estimate (KDE, lines). (b) Histograms of the errors
for the predictions shown in (a), each with its own KDE (lines). The inset shows the
error scattering in each case.

Table 1
Model performance metrics for the investigated ML models trained with the training
set with predictions done on the training (tr) and test (te) sets.

Model MAE 𝑅2 MAPE/% MSE

XGBoost 𝑡𝑟 2.54 0.87 9.69 10.04
XGBoost 𝑡𝑒 3.23 0.78 11.00 17.78
CNN 𝑡𝑟 1.76 0.93 7.00 5.10
CNN 𝑡𝑒 2.89 0.81 9.63 15.14
Ensemble 𝑡𝑟 1.56 0.95 6.32 3.85
Ensemble 𝑡𝑒 2.72 0.85 9.54 12.22

estimate (continuous lines). Fig. 6(a) shows that the distributions of
training and test predictions nicely overlap and also have a similar
shape to a Gaussian distribution with two peaks, which arises from the
use of two ML models in the ensemble model. Fig. 6(b) shows that the
errors of the predictions are rather unstructured (see the inset), being
approximately described by a Gaussian distribution with zero mean. As
expected, the Gaussian is broader for the test errors, as these predictions
were performed on unseen data and are therefore supposed to exhibit
larger errors.

The final accuracy found for the ensemble model (Table 1, last
line) is already good enough for FVC characterizations required in
polymer engineering, where acceptable MAE errors lie in the range
of about 3.00–5.00. There are several ways of further improving the
accuracy of the model. Re-parameterizing the CNN using Bayesian
optimization would be one a first way. Adding other ML models to the
ensemble approach would be a second way. Another way is to employ
transfer learning to use one (or a combination of) the state-of-the-art
deep learning models such as, for instance, those from the ResNet (He
et al., 2016), VGGNet (Simonyan & Zisserman, 2015), and Inception
Networks (Szegedy et al., 2016) families, and fine tune these models.
7 
AutoML libraries such as aX (Balandat et al., 2023) is still another
way to do that. While this is certainly expected to improve even more
the accuracy, it brings no new insight to the present proof-of-concept
investigation and is out of the scope of this work. This is part of a
future investigation (vide infra). Having compared the CNN discussed
in this work with a much simpler ML model like XGBoost brings, on
the other side, much more insight, as it provides alternatives to easily
and efficiently train and optimize a ML model, therefore enhancing
sustainability, as well as helping democratize knowledge since regions
with low-budget computational resources could also have access to it.

To advance the discussion on the performance of ML models, it is
crucial to explore both the potential and limitations of determining
FVC in NFC using LM and CNN. Accurate analysis of FVC using LM-
based methods hinges on two key assumptions: first, the fibers must
be unidirectionally oriented. Second, the cross-sectional plane must
be perpendicular to the fiber axes. Additionally, the quality of sam-
ple preparation is paramount, requiring polished surfaces free from
scratches. Achieving this can be challenging due to the softness of
natural fibers relative to glass or carbon fibers. Furthermore, suffi-
cient contrast between the natural fibers and the polymeric matrix
is necessary to enable effective binarization of the LM images via
auto-thresholding.

Comparing ML models to existing techniques for determining the
FVC in NFC is essential for objectively evaluating the models’ practical
usability. However, direct comparison between different experimental
methods presents challenges. For instance, LM assesses the FVC of a
microscopic section (200 μm by 150 μm) of the NFC, whereas TGA and
density measurements require macroscopic samples for reliable FVC
determination. It is important to note that, unlike LM, NFC samples
analyzed by TGA or density measurements do not require unidirec-
tional fiber orientation. However, applying these common methods
to NFC remains complex due to the low thermal stability and low
atomic density of natural fibers. The primary aim of this study is to
demonstrate how image analysis of NFC via LM can be optimized with
CNNs. Here, it is shown that automated image processing software,
such as ImageJ, significantly reduces the time needed for FVC analysis
when using macros compared to manual methods. Additionally, once
CNNs and ensemble models are properly trained, they further expedite
FVC assessment in LM images while maintaining robust predictive
performance.

4. Conclusion

It has been proved that the pixels from light microscopy images of
NFC could be reliably used to predict FVC using different ML models.
The good accuracy achieved for both models and specially for their
ensemble already fulfills the minimum accuracy requirements found in
polymer engineering. The exhaustive maximization of the accuracy by
using more complex deep learning models and transfer learning is out
of the scope of this proof-of-concept investigation.

The effectiveness of CNNs and XGBoost models in predicting the
FVC of NFC from LM images was shown. The distribution of FVCs,
captured through a comprehensive set of LM images, exhibited a wide
range, with values pertinent to industrial applications of load-bearing
composites.

The CNN model, equipped with 432,301 trainable parameters and
a series of convolutional and fully connected layers, showed good
performance on both the training and test datasets. It achieved low
errors and a high 𝑅2 value on the training set, with little overfitting
observed when evaluated against the test set. This suggests that the
CNN model has a strong ability to generalize from the training data
to unseen data, making it a reliable tool for predicting FVC in natural
fiber composites based on microscopy images.

The XGBoost model displayed a similar degree of overfitting. It is
noteworthy that the XGBoost model still delivered a good prediction
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accuracy on the test set, which was acceptably high for FVC charac-
terizations required in polymer engineering. This outcome underscores
the versatility of XGBoost in handling diverse datasets and learning
asks, even those for which it is not inherently specialized, like image
ecognition. Given that this model is easier, faster, and more efficient
o optimize and train compared to CNN-based models, it presents an
nteresting alternative for predicting FVC. Not only is it more sustain-
ble, but it also helps to democratize knowledge in regions with limited
omputational resources.

Ensembling the predictions from the CNN and XGBoost models
enabled one to achieve even higher predictive performances for both
the training and test sets.

The findings advocate for the integration of ML models into the
analysis of NFC. The demonstrated capability of these models to ac-
curately predict FVC from LM images can significantly streamline the
material characterization process, providing a rapid and efficient means
of assessing composite quality and performance. Future work may focus
on maximizing the accuracy using complex deep learning models and
transfer learning, exploring the incorporation of additional image fea-
tures, and extending the methodology to other types of composites and
material characterizations. This research paves the way for advanced
material design and quality control through the application of ML
technologies.
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