URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8640-7
Titelangaben
    
  Baumann, Michael Heinrich:
Generalized Triangular Numbers and Combinatorial Explanations.
  
    
    In: Recreational Mathematics Magazine.
      
      Bd. 12
      
      (Juni 2025)
       Heft  20
    .
     - S. 103-119.
    
    
ISSN 2182-1976
     
     DOI der Verlagsversion: https://doi.org/10.2478/rmm-2025-0006
  
  
Volltext
| ![[thumbnail of Generalized_Triangular_Numbers_and_Combinatorial_Explanations.pdf]](https://epub.uni-bayreuth.de/style/images/fileicons/application_pdf.png) | 
 | ||||||||
| Download (1MB) | 
Weitere URLs
Abstract
The formula for the sums of the first integers, which are known as triangular numbers, is well known and there are many proofs for it: by induction, graphical, by combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral numbers. In this article, we discuss a generalization of triangular and tetrahedral numbers where the number of summation symbols is variable. We repeat results from the literature that state that these so-called generalized triangular numbers can be represented via multicombinations, i.e. combinations with repetitions, and give an illustrative explanation for this formula, which is based on combinatorics. Via high-dimensional illustrations, we show that these generalized triangular numbers are figurate numbers, namely hyper-tetrahedral numbers, see Figure 1. Additionally, we demonstrate that there is a relation between the height and the dimension of these hypertetrahedra, i.e. a series of generalized triangular numbers with fixed dimension and varying height can be represented as such a series with fixed height and varying dimension, and vice versa.
Weitere Angaben
| Publikationsform: | Artikel in einer Zeitschrift | 
|---|---|
| Keywords: | Triangular Numbers; Combinatorics; Multicombinations; Figurate Numbers; Hypertetrahedron | 
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Modellierung und Simulation (MODUS) Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Forschungseinrichtungen Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen | 
| Sprache: | Englisch | 
| Titel an der UBT entstanden: | Ja | 
| URN: | urn:nbn:de:bvb:703-epub-8640-7 | 
| Eingestellt am: | 30 Okt 2025 15:54 | 
| Letzte Änderung: | 30 Okt 2025 15:54 | 
| URI: | https://epub.uni-bayreuth.de/id/eprint/8640 | 
 
        
 im Publikationsserver
 im Publikationsserver bei Google Scholar
 bei Google Scholar Download-Statistik
 Download-Statistik