
Generalized Triangular Numbers and
Combinatorial Explanations

Michael Heinrich Baumann1

1University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany,
michael.baumann@uni-bayreuth.de

Abstract

The formula for the sums of the first integers, which are known as triangular
numbers, is well known and there are many proofs for it: by induction, graphical, by
combinatorics, etc. The sum of the first triangular numbers is known as tetrahedral
numbers. In this article1, we discuss a generalization of triangular and tetrahedral
numbers where the number of summation symbols is variable. We repeat results from
the literature that state that these so-called generalized triangular numbers can be
represented via multicombinations, i.e. combinations with repetitions, and give an
illustrative explanation for this formula, which is based on combinatorics. Via high-
dimensional illustrations, we show that these generalized triangular numbers are
figurate numbers, namely hyper-tetrahedral numbers, see Figure 1. Additionally, we
demonstrate that there is a relation between the height and the dimension of these
hypertetrahedra, i.e. a series of generalized triangular numbers with fixed dimension
and varying height can be represented as such a series with fixed height and varying
dimension, and vice versa.

1 Motivation

Long before the time of Carl Friedrich Gauss2 the formula
n2∑

n1=1

n1 =
(n2 + 1)n2

2
=

(
n2 + 1

2

)
for the triangular numbers was known, e.g., in the time of the medieval Irish monk Dicuil3

[2], probably also in the time of the ancient Greeks, i.e. in the time of Pythagoras or the

©2025 Michael Heinrich Baumann. This is an open access article licensed under the Creative
Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-
nd/4.0/).

1This article is building upon the paper [1] from the same author.
2a.k.a. Carl Friedrich Gauß
3a.k.a. Dikuil and Dicuilus
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Figure 1: A photography of a four-dimensional hypertetrahedron of height three consist-
ing of 15 grapefruits. A four-dimensional hypertetrahedron is a line of three-dimensional
pyramids. Note that it is not a coincidence that the number of grapefruits is a triangular
number

(∑5
n1=1 n1 = 15

)
, cf. Equation (5).

Pythagoreans [3], and maybe even before them (see also [4, 5]). There is an overwhelming
number of visual, illustrative, formal, and/or combinatorial proofs for it, some of them are
so-called “proofs without words.” Known is a story about the young Gauss discovering the
formula (i.a. [6, 7]), which is why the formula is sometimes called “Gaussian Summation
Formula” or briefly “Little Gauss.” Note that we intentionally have used here the terms
n2, n1 ∈ N = {1, 2, 3, . . .} and not, say, n, i. The reason is the following: in this article we
are going to have a look at generalizations of the triangular numbers (and of n1 =

(
n1

1

)
),

such as the tetrahedral numbers4

n3∑
n2=1

n2∑
n1=1

n1 =
(n3 + 2)(n3 + 1)n3

6
=

(
n3 + 2

3

)
In [1], a generalization of the formula for triangular and tetrahedral numbers, namely

nk∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

(
nk + k − 1

k

)
(1)

4A famous example of tetrahedral numbers is hidden in the English Christmas carol “The Twelve
Days of Christmas,” whose oldest known printed version dates back to the 18th century (see [8, 9]). In
it, on day 1, 1 present of type 1 is received; on day 2, 1 present of type 1 and 2 presents of type 2 are
received; on day 3, 1 present of type 1, 2 presents of type 2, and 3 presents of type 3 are received; and
so forth. In total, there are

∑12
n2=1

∑n2
n1=1 n1 =

∑12
n2=1

n2(n2+1)
2

= 364 presents received, which is the
twelfth tetrahedral number, i.e. the sum of the first twelve triangular numbers. Another way to count
the total number of presents is to sum over the different types, leading to

∑12
i=1 i(13− i) = 364. Confer

[10].
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with nk ∈ N and k ∈ N0 = {0, 1, 2, . . .}, is given and proven. The cases k = 0 and k = 1
need some further explanation when having a look at the left-hand side of Equation (1).
In the case k = 1, there is no summation sign, i.e., the left-hand side equals n1. The
case k = 0 is more tricky: when having a look at Figure 2, we observe that for k = 3
the numbers can be illustrated as tetrahedra (3d), for k = 2 this is true for triangles
(2d), for k = 1 they are lines (1d), thus, for k = 0 it is convenient to illustrate the
“numbers” as a dot (0d), leading to the definition of the left-hand side as 1, constant.
We call

∑nk
nk−1=1

∑nk−1

nk−2=1 . . .
∑n3

n2=1

∑n2
n1=1 n1 the nk-th generalized triangular number

of dimension k. For example, the series of the three-dimensional generalized triangular
numbers is the series of the tetrahedral numbers. The generalized triangular numbers
equal one whenever k = 0 or nk = 1. Here we note that k − 1 for k = 2, 3, 4, . . . is the
number of summation signs and nk ∈ N is the number on top of the first summation
sign (i.e. on the far left). The number nk is called the height. It does not depend on k
(i.e., it is not n(k)), but the index k is only used to distinguish the k different variables
n1, n2, . . . , nk. The variables n1, . . . , nk−1 are bound while nk and k are free.

dimension: k = 0
“height:” nk = n0 = 4

dimension: k = 1
height: nk = n1 = 4

dimension: k = 2
height: nk = n2 = 4

dimension: k = 3
height: nk = n3 = 4

Figure 2: Hypertetrahedra of height four in dimensions zero (dot), one (line), two (trian-
gle), and three (tetrahedron). The triangle in the lower left corner, i.e. the hypertetra-
hedron of dimension two and height four, consists of ten dots; it was of special interest
to the Pythagoreans and is called “Tetractys.”

In [1], Equation (1) is proven by induction and an illustrative derivation is presented.
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This illustrative derivation goes as follows: It is well known that if in a group of n2 + 1
people everyone shakes hands with everyone, there will be a total of 1 + 2 + 3 + . . .+ n2

handshakes (the first one greets n2 people, the second one another n2 − 1, etc.), but
there will also be

(
n2+1
2

)
greetings, since there are just as many pairs. So, according

to the principle of double counting,5 these two numbers are equal. The same reasoning,
with a group of nk + k − 1 people where all subgroups of exactly k people perform some
“handshake” together, leads to the given formula.

The purpose of this article is twofold: First, we shortly rephrase the formal proof from
[1]—which is not written in English, but in German—in order to ensure self-containedness
of the work at hand. Second, we will give an illustrative combinatorial explanation of it.
This will use multicombinations (i.e. combinations with repetitions).6 Further, to show in
which sense generalized triangular numbers are figurate numbers, geometric illustrations
are given, cf. [12, 13]. Via these geometric illustrations further insights, esp. on heights
two and three, are given. Additionally, it is explained how dimensions and heights are
related.

2 Proof of Equation (1)

The proof is very briefly rephrased from [1] and is included here for completeness.
First, we show that for all n ∈ N and k ∈ N0, it holds:

n∑
i=1

(i+ k − 1)!

(i− 1)!
=

(n+ k)!

(k + 1)(n− 1)!
(2)

Let n = 1 and k ∈ N0 arbitrary, then on both sides k! remains. Now, suppose the
equation is true for some n ∈ N and all k ∈ N0. Let k ∈ N0 be arbitrary. We compute:

n+1∑
i=1

(i+ k − 1)!

(i− 1)!
=

(n+ k)!

n!
+

(n+ k)!

(k + 1)(n− 1)!
=

(n+ k)!(n+ k + 1)

n!(k + 1)

This completes the proof of Equation (2). Now, we turn to the formal proof of Equa-
tion (1). For k = 0, both sides equal 1. For k = 1 both sides equal n1. Now, we assume
that Equation (1) holds for some k ∈ N0 and all nk ∈ N. Let nk+1 ∈ N be arbitrary. We

5The principle of double counting states that when there is a finite set, which might depend on a
parameter (or also on some parameters), and we find two (or more) ways to count its cardinality and to
express these numbers, i.e. the cardinalities via one term each, these terms have to be equal.

6The author is grateful to Jochen Ziegenbalg (Pädagogische Hochschule Karlsruhe, Karlsruhe, Ger-
many; i.R.) for suggesting to include a real world photography (Figure 1) for the purpose of illustration
and to think about the relationship between generalized triangular numbers and multicombinations after
he read the article [1] by the author, which is related to [11].
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calculate:
nk+1∑
nk=1

nk∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

nk+1∑
nk=1

(
nk + k − 1

k

)

=
1

k!

nk+1∑
nk=1

(nk + k − 1)!

(nk − 1)!

(2)
=

(nk+1 + k)!

(k + 1)!(nk+1 − 1)!

Quod erat demonstrandum.

3 Multicombinations

A well-known problem from combinatorics is the following: How many ways are there
to distribute k indistinguishable balls into n numbered (sufficiently large) drawers? This
number is known as multicombinations7 and denoted by

((
n
k

))
, see [14]. One can calculate

this number of possibilities by considering that it is literally the same

• to distribute k indistinguishable balls into n numbered (sufficiently large) drawers

and

• to distribute the n − 1 separators, which represent the boundaries between the n
drawers, and the k balls into n+ k− 1 places (where the places are numbered, but
both the balls and the separators are indistinguishable in each case).

Hence, it follows by the principle of double counting that((
n

k

))
=

(
n+ k − 1

k

)
Not only due to the definition of binomial coefficients

(
n
k

)
= n!

k!(n−k)! , but also by the

principle of double counting it is clear that
(
n+k−1

k

)
=

(
n+k−1
n−1

)
=

((
n
k

))
holds since it

does not matter whether to distribute the n−1 separators or the k balls. Furthermore, it
holds

((
n
k

))
=

(
n+k−1
n−1

)
=

(
(k+1)+(n−1)−1

(n−1)

)
=

((
k+1
n−1

))
. When reconsidering Equation (1),

we observe that
nk∑

nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

((
nk

k

))
(3)

holds. In the next paragraph, we will explain this equality in a combinatorial way.
7Multicombinations are also named combinations with repetitions, multiset coefficients, or multiset

numbers.
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4 The combinatorial explanation

First of all, we mention that the value of the nk-th k-dimensional generalized triangu-
lar number

∑nk
nk−1=1

∑nk−1

nk−2=1 . . .
∑n3

n2=1

∑n2
n1=1 n1 can be illustrated as a k-dimensional

hypertetrahedron with height nk, see Figure 2 for dimensions zero to three and Fig-
ure 1 for a photography illustrating a four-dimensional hypertetrahedron. Since the
imagination of figures in dimensions four and higher is not that easy, in Figures 3 and
4 hypertetrahedra of height three are depicted in different dimensions (dimensions zero
to eight).8 Note that in all dimensions hypertetrahedra of height one are just zero-
dimensional single dots.

With that, we may rephrase Equation (1) a little bit informally as:

#“Dots in a k-dimensional hypertetrahedron of height nk” =

=

height∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

=

(
height plus dimension minus one

dimension

)
Why higher-dimensional hypertetrahedra can be illustrated as we have done, we now

explain briefly. A 3d tetrahedron can be drawn by iteratively drawing 2d triangles (see
Figure 3, top right and middle left) in the following way. One draws a triangle in the
size the tetrahedron shall have, then a triangle that is one row smaller, a triangle that is
again one row smaller and so on until finally a single dot is drawn. In the same way a 2d
triangle can be drawn by iteratively drawing 1d lines (see Figure 3, top center and top
right). One draws a line, then a line that is one dot smaller, a line that is again one dot
smaller, and so on until a single dot is drawn in the end. Thus, a 4d hypertetrahedron
can be drawn by iteratively drawing 3d tetrahedra (see Figure 3, middle left and middle
right). One draws one tetrahedron in the desired size, one tetrahedron that is one plane
smaller, one that is again one plane smaller, etc., up to single dot. And that way it works
for all other dimensions, too.

Now, we are going to deal with the question how to count the number of dots in
a k-dimensional hypertetrahedron of height nk. We find two different ways to do this
and use the principle of double counting to deduce Equation (1). It is obvious that the
number of dots in a k-dimensional hypertetrahedron of height nk is equal to the sum
on the left-hand side of Equation (1). Thus, let us now attempt to find a combinatorial
explanation for why it also corresponds to the right-hand side.

Before we turn to the k-dimensional case, we first look at Figure 6. On the left-hand
side we see a triangle of height four. The upper right side of this triangle is marked in
gray. It is a (one-dimensional) line of length (or height) four. We can represent this line as
a hypertetrahedron with k = 1 and nk = n1 = 4. The triangle has k+1 = 2 dimensions.

8Additionally, in Figure 5 hypertetrahedra of height two are depicted in different dimensions (zero to
nine). However, due to the shallowness of the hypertetrahedra of height two, Figure 5 might not be as
insightful as Figures 3 and 4.
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Clearly, the line consists of n1 = 4 dots. From another point of view we see that there is a
unique black dot opposite the fixed gray line. Further, we observe that if we always jump
in the direction from the black dot to the gray line from one dot to a neighboring dot,
we can get from this unique black dot to the gray line within nk − 1 = 3 steps, each in
two (i.e., k + 1) possible directions. In which dot we end up is determined by how many
times we go in which of the k+1 directions; but not by the order in which we do so. We
always arrive at the line after nk − 1 = 3 steps, and each dot can be reached within three
such steps. That is, the number of dots in the line corresponds to the number of ways to
distribute nk − 1 = 3 steps arbitrarily among k + 1 = 2 directions. How many ways are
there to distribute nk − 1 = 3 steps arbitrarily to k + 1 = 2 directions? Put another way,
how many ways are there to arbitrarily distribute nk−1 = 3 balls among k+1 = 2 drawers?
The answer is

(
(nk−1)+(k+1)−1

(nk−1)

)
=

(
nk−1+k

k

)
=

((
nk
k

))
=

(
3+2−1

3

)
= 4 = n1 = nk.

On the right-hand side of Figure 6 a tetrahedron of height four is depicted. The
right side of this tetrahedron is marked in gray and it is a (two-dimensional) triangle of
height four. This triangle can be represented as a (low-dimensional) hypertetrahedron
with k = 2 and nk = n2 = 4. Hence, the ‘higher-dimensional’ hypertetrahedron, which is
a tetrahedron, has k+1 = 3 dimensions. The triangle consists of

∑n2
n1=1 n1 dots. Again,

we see that there is a unique black dot opposite the fixed gray side. When jumping in
the direction from the black dot to the gray side from one dot to a neighboring dot, one
can get from the unique black dot to the fixed side within nk − 1 = 3 steps, in each of
which we can go into three (i.e., k + 1) possible directions. Which dot one reaches is
determined by how many times one goes in which of the k+1 directions; but not by the
order in which this is done. The fixed side is always reached after nk − 1 = 3 such steps,
and each dot can be reached within three of these steps. That is, the number of dots in
the triangle equals the number of ways to distribute nk − 1 = 3 steps arbitrarily among
k + 1 = 3 directions. Again, we ask: How many ways are there to distribute nk − 1 = 3
steps arbitrarily to k+1 = 3 directions? How many ways are there to arbitrarily distribute
nk−1 = 3 balls among k+1 = 3 drawers? We calculate

(
(nk−1)+(k+1)−1

(nk−1)

)
=

(
nk−1+k

k

)
=((

nk
k

))
=

(
3+3−1

3

)
= 10 =

∑n2
n1=1 n1 =

∑nk
n1=1 n1. That means, instead of counting and

adding numbers of dots, we can use combinatorics to calculate the number of dots. This
idea is generalized next.

Each side of a (k + 1)-dimensional ((k+1)d) hypertetrahedron is a k-dimensional
hypertetrahedron, see Figure 7. When fixing one side of a (k + 1)-dimensional hyper-
tetrahedron, there is one unique corner opposite of this side. When having a look at
Figure 8, it turns out that if the dimension of a fixed side is one, two, or three, there
are two, three, or four possible directions, resp., for moving one step from a dot to a
neighboring dot towards the fixed side. This pattern is also true for higher dimensions,
though this is more difficult to picture.

Whenever starting in the unique corner, see Figure 9, and moving nk−1 steps towards
the fixed side, one of the dots of this side is reached. Analogously, it is easy to see
that all dots of this side can be reached by moving nk − 1 such steps. For reaching
one specific dot in the fixed k-dimensional side, it is not important in which order of
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directions the steps are moved. Rather, only the numbers of steps in each direction
matters. For example, in Figure 9 in the subfigure with the two-dimensional side, when
moving three steps from the unique corner towards the fixed side, this side is reached.
All paths (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1) lead to the same dot, but no
other path does.

Thus, the number of dots in the side is, on the one hand, the number of dots in
a line, a triangle, a tetrahedron, or, in general, a hypertetrahedron, i.e., n1,

∑n2
n1

n1,∑n3
n2=1

∑n2
n1

n1, or, in general,
∑nk

nk−1=1

∑nk−1

nk−2=1 . . .
∑n3

n2=1

∑n2
n1=1 n1. On the other hand,

the number of dots equals the number of possibilities to move nk − 1 steps in some of
the k + 1 directions, where the order is not important and it can be moved more than
once into the same direction. How many ways are there to distribute nk − 1 balls—the
number of steps, which is the height minus one—into k + 1 drawers—labeled with the
possible directions? The answer is

(
(nk−1)+k
(nk−1)

)
=

(
nk+k−1
nk−1

)
=

((
nk
k

))
since there are

k = (k + 1)− 1 separators between the k + 1 drawers. Hence, by the principle of double
counting Equations (3) and, thus, (1) follow.

5 Further insights

It is straightforward to compute with Equation (1) that for nk = 2 and arbitrary
k ∈ N0

2∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 = k + 1 (4)

holds. That means, the series of the number of dots for all hypertetrahedra with height
two with increasing dimension equals the series of natural numbers (n)n=1,2,3,....

This relationship becomes obvious when having a look at Figure 5 or when calculating:

2∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 = 1 +
2∑

nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

= 2 +

2∑
nk−3=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

...

= (k − 3) +
2∑

n2=1

n2∑
n1=1

n1

= (k − 2) +
2∑

n1=1

n1 = (k − 2) + (1 + 2) = k + 1
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Somehow more interesting is the following equation, which uses
(
n
k

)
=

(
n

n−k

)
:

3∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

(
k + 2

k

)
=

(
(k + 1) + 2− 1

2

)
=

k+1∑
k1=1

k1 (5)

That means, the series of the number of dots for all hypertetrahedra with height three
with increasing dimension equals the series of triangular numbers

(
n(n+1)

2

)
n=1,2,3,...

.

To understand the meaning of Equation (5) the reader might have a look at Figures 3
and 4, however, the following calculations might be more helpful.

3∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 = 1 +

2∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

+

3∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

= 2 + k +

2∑
nk−3=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

+

3∑
nk−3=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

= 3 + (k + (k − 1)) +

2∑
nk−4=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

+

3∑
nk−4=1

. . .

n3∑
n2=1

n2∑
n1=1

n1

...

= (k − 3) +

k∑
k1=5

k1

+
2∑

n2=1

n2∑
n1=1

n1 +

3∑
n2=1

n2∑
n1=1

n1

= (k − 2) +
k∑

k1=4

k1 +
2∑

n1=1

n1 +
3∑

n1=1

n1

= (k − 1) +

k∑
k1=3

k1 + (2 + 3) =

k+1∑
k1=1

k1
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This pattern can be generalized, too, to

nk∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

((
nk

k

))
=

(
nk + k − 1

k

)

=

(
(k + 1) + (nk − 1)− 1

(nk − 1)

)
=

((
k + 1

nk − 1

))

=
k+1∑

knk−2=1

knk−2∑
knk−3=1

. . .

k3∑
k2=1

k2∑
k1=1

k1 (6)

which equals exemplarily for nk = 4

4∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

(
k + 3

k

)
=

(
k + 2

3

)
=

k+1∑
k2=1

k2∑
k1=1

k1

i.e., the series of the number of dots for all hypertetrahedra with height four with in-
creasing dimension equals the series of tetrahedral numbers

(
n(n+1)(n+2)

3!

)
n=1,2,3,...

. Note

that in Equation (6) there are k − 1 many summation signs on the left-hand side with
the number nk on top of the first (i.e. the most left) one and nk − 2 many summation
signs on the right-hand side with the number k + 1 on top of the first one.

6 Conclusion

In this article, we presented the results

nk∑
nk−1=1

nk−1∑
nk−2=1

. . .

n3∑
n2=1

n2∑
n1=1

n1 =

(
nk + k − 1

k

)

=

((
nk

k

))
=

k+1∑
knk−2=1

knk−2∑
knk−3=1

. . .

k3∑
k2=1

k2∑
k1=1

k1 (7)

where the first line is known from [1]. We rephrased the formal proof from that source
and briefly explained an illustrative derivation of this formula from the same source, using
the principle of double counting and the numbers of possibilities of “handshakes.” In the
main part of the article at hand, we illustrated these generalized triangular numbers as
hypertetrahedra and gave illustrative insights why it is quite natural that these numbers
are multicombinations. Additionally, we showed that there is a relation between the
dimension and the height of hypertetrahedra as can be seen in Equation (7): on the
left-hand side there is the nk-th generalized triangular number of dimension k (i.e., k− 1
summation signs and the number nk on top of the first one) and on the right-hand side
there is the (k + 1)-th generalized triangular number of dimension nk − 1 (i.e., nk − 2
summation signs and the number k + 1 on top of the first one).
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dimension: k = 0
“height:” nk = n0 = 3

dimension: k = 1
height: nk = n1 = 3

dimension: k = 2
height: nk = n2 = 3

dimension: k = 3
height: nk = n3 = 3

dimension: k = 4
height: nk = n4 = 3

dimension: k = 5
height: nk = n5 = 3

Figure 3: Hypertetrahedra of height three in dimensions zero, one, two, three, four, and
five. High-dimensional hypertetrahedra can be represented as low-dimensional hyperte-
trahedra consisting of other hypertetrahedra.
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dimension: k = 6
the sixth dimension is marked with patterns

height: nk = n6 = 3

hypertetrahedron
with k = 6, nk = 3

hypertetrahedron
with k = 6, nk = 2

hypertetrahedron
with k = 6, nk = 1

dimension: k = 7
height: nk = n7 = 3

hypertetrahedron
with k = 6, nk = 3

hypertetrahedron
with k = 6, nk = 2

hypertetrahedron
with k = 6, nk = 1

hypertetrahedron
with k = 6, nk = 2

hypertetrahedron
with k = 6, nk = 1

hypertetrahedron
with k = 6, nk = 1

dimension: k = 8
height: nk = n8 = 3

Figure 4: Hypertetrahedra of height three in dimensions six, seven, and eight. High-
dimensional hypertetrahedra can be represented as low-dimensional hypertetrahedra con-
sisting of other hypertetrahedra. The depicted pattern from this figure and Figure 3 can
be continued straightforwardly.
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dimension: k = 0
“height:” nk = n0 = 2

dimension: k = 1
height: nk = n1 = 2

dimension: k = 2
height: nk = n2 = 2

dimension: k = 3
height: nk = n3 = 2

dimension: k = 4
height: nk = n4 = 2

dimension: k = 5
height: nk = n5 = 2

dimension: k = 6
the sixth dimension is marked with patterns

height: nk = n6 = 2

hypertetrahedron
with k = 6, nk = 2

hypertetrahedron
with k = 6, nk = 1

dimension: k = 7
height: nk = n7 = 2

hypertetrahedron
with k = 6, nk = 2

hypertetrahedron
with k = 6, nk = 1

hypertetrahedron
with k = 6, nk = 1

dimension: k = 8
height: nk = n8 = 2

hypertetrahedron
with k = 6, nk = 2

hypertetrahedron
with k = 6, nk = 1

hypertetrahedron
with k = 6, nk = 1

hypertetrahedron
with k = 6, nk = 1

dimension: k = 9
the ninth dimension is marked with patterns

height: nk = n9 = 2

Figure 5: Hypertetrahedra of height two in dimensions zero to nine. High-dimensional
hypertetrahedra can be represented as low-dimensional hypertetrahedra consisting of
other hypertetrahedra. This pattern can be continued straightforwardly.
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2d triangle
—dimension

of the side: k = 1,
height: nk = n1 = 4

1

2

1

3d tetrahedron
—dimension

of the side: k = 2,
height: nk = n2 = 4

2

1
3

Figure 6: A triangle and a tetrahedron with one side marked gray (each), which are a
line resp. a triangle. Additionally, paths from the respective opposite dots to the marked
sides are depicted (cf. Figure 8).

1d line
—dimension

of the side: k = 0,
“height:” nk = n0 = 4

2d triangle
—dimension

of the side: k = 1,
height: nk = n1 = 4

3d tetrahedron
—dimension

of the side: k = 2,
height: nk = n2 = 4

4d hypertetrahedron—dimension of the side: k = 3, height: nk = n3 = 4

Figure 7: Hypertetrahedra of height four in dimensions one, two, three, and four (k+1 =
1, 2, 3, 4). In each case, one side, which is a hypertetrahedron of dimension zero, one,
two, or three, resp., (k = 0, 1, 2, 3) and the unique opposite corner are marked.
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1

2

k = 1 (side)

3

1

2

k = 2 (side)

4

3

21

k = 3 (side)

Figure 8: Possibilities to move one step to a neighboring dot from the unique corner in
the direction of the fixed side.

1 1

22
1

2
1

k = 1 (side), nk = 4

1

1
22

3
1
3

3

2

1

2 3

k = 2 (side), nk = 4

2

3

3

3
2

3
2

k = 3 (side), nk = 4

Figure 9: The dot that is reached by the arcs is not determined by the order of the
directions but only by their numbers (cf. Figure 8). All chains of length nk − 1 from the
unique corner towards the side reach the marked side. All dots in the side can be reached
by such a chain of arcs.
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