Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Transfer learning from synthetic data for open-circuit voltage curve reconstruction and state of health estimation of lithium-ion batteries from partial charging segments

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008381
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8381-8

Titelangaben

Hofmann, Tobias ; Hamar, Jacob ; Mager, Bastian ; Erhard, Simon ; Schmidt, Jan Philipp:
Transfer learning from synthetic data for open-circuit voltage curve reconstruction and state of health estimation of lithium-ion batteries from partial charging segments.
In: Energy and AI. Bd. 17 (2024) . - S. 100382.
ISSN 2666-5468
DOI der Verlagsversion: https://doi.org/10.1016/j.egyai.2024.100382

Volltext

[thumbnail of 1-s2.0-S266654682400048X-main.pdf]
Format: PDF
Name: 1-s2.0-S266654682400048X-main.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (2MB)

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Abstract

Data-driven models for battery state estimation require extensive experimental training data, which may not be available or suitable for specific tasks like open-circuit voltage (OCV) reconstruction and subsequent state of health (SOH) estimation. This study addresses this issue by developing a transfer-learning-based OCV reconstruction model using a temporal convolutional long short-term memory (TCN-LSTM) network trained on synthetic data from an automotive nickel cobalt aluminium oxide (NCA) cell generated through a mechanistic model approach. The data consists of voltage curves at constant temperature, C-rates between C/30 to 1C, and a SOH-range from 70 to 100. The model is refined via Bayesian optimization and then applied to four use cases with reduced experimental nickel manganese cobalt oxide (NMC) cell training data for higher use cases. The TL models’ performances are compared with models trained solely on experimental data, focusing on different C-rates and voltage windows. The results demonstrate that the OCV reconstruction mean absolute error (MAE) within the average battery electric vehicle (BEV) home charging window (30 to 85 state of charge (SOC)) is less than 22mV for the first three use cases across all C-rates. The SOH estimated from the reconstructed OCV exhibits an mean absolute percentage error (MAPE) below 2.2 for these cases. The study further investigates the impact of the source domain on TL by incorporating two additional synthetic datasets, a lithium iron phosphate (LFP) cell and an entirely artificial, non-existing, cell, showing that solely the shifting and scaling of gradient changes in the charging curve suffice to transfer knowledge, even between different cell chemistries. A key limitation with respect to extrapolation capability is identified and evidenced in our fourth use case, where the absence of such comprehensive data hindered the TL process.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Lithium-ion battery; State of health estimation; Transfer learning; OCV curve; Partial charging; Synthetic data
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Systemtechnik elektrischer Energiespeicher > Lehrstuhl Systemtechnik elektrischer Energiespeicher - Univ.-Prof. Dr. Jan Philipp Schmidt
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Systemtechnik elektrischer Energiespeicher
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8381-8
Eingestellt am: 31 Mrz 2025 08:04
Letzte Änderung: 31 Mrz 2025 08:04
URI: https://epub.uni-bayreuth.de/id/eprint/8381

Downloads

Downloads pro Monat im letzten Jahr