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H I G H L I G H T S

A TCN-LSTM model for full OCV recon-
struction is introduced.
Transfer learning from synthetic data is
explored for four use cases.
Transfer learning outperforms conven-
tional deep learning.
Transfer learning is applied from two
other battery datasets.
Benefits and limitations of transfer learn-
ing are explored.
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A B S T R A C T

Data-driven models for battery state estimation require extensive experimental training data, which may
not be available or suitable for specific tasks like open-circuit voltage (OCV) reconstruction and subsequent
state of health (SOH) estimation. This study addresses this issue by developing a transfer-learning-based OCV
reconstruction model using a temporal convolutional long short-term memory (TCN-LSTM) network trained on
synthetic data from an automotive nickel cobalt aluminium oxide (NCA) cell generated through a mechanistic
model approach. The data consists of voltage curves at constant temperature, C-rates between C∕30 to 1C,
and a SOH-range from 70% to 100%. The model is refined via Bayesian optimization and then applied to four
use cases with reduced experimental nickel manganese cobalt oxide (NMC) cell training data for higher use
cases. The TL models’ performances are compared with models trained solely on experimental data, focusing
on different C-rates and voltage windows. The results demonstrate that the OCV reconstruction mean absolute
error (MAE) within the average battery electric vehicle (BEV) home charging window (30% to 85% state of
charge (SOC)) is less than 22mV for the first three use cases across all C-rates. The SOH estimated from the
reconstructed OCV exhibits an mean absolute percentage error (MAPE) below 2.2% for these cases. The study
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further investigates the impact of the source domain on TL by incorporating two additional synthetic datasets,
a lithium iron phosphate (LFP) cell and an entirely artificial, non-existing, cell, showing that solely the shifting
and scaling of gradient changes in the charging curve suffice to transfer knowledge, even between different
cell chemistries. A key limitation with respect to extrapolation capability is identified and evidenced in our
fourth use case, where the absence of such comprehensive data hindered the TL process.
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1. Introduction

With newer generations of battery electric vehicles (BEVs), more
computing resources – either directly in the car or accessible via the
backend – accelerate the development of state estimation algorithms.
The state of health (SOH) plays an important role because it determines
the available energy and power over lifetime. It is mostly defined
as the available capacity in relation to its capacity at begin of life
(BOL) [1]. Additionally the open-circuit voltage (OCV) is an important
characteristic of the lithium-ion battery which is crucial for accurate
state of charge (SOC) estimation, algorithms concerning safety, healthy
fast-charging and a prolonged lifetime [2,3]. Available methods [4,5]
use the pristine open-circuit potential (OCP) curves to reconstruct the
aged OCV curve. These reconstruction methods, however, simplify the
degradation of the OCV based on the mechanistic model approach [6]
and require constant current measurements with very low C-rates [4]
or relaxed voltage points [5].

Data-driven methods can bridge this gap by relying on empirical
datasets and thus are promising to eliminate the need for specific
input measurements. They are capable of discovering data patterns
leading to qualitative features for SOH estimation and OCV reconstruc-
tion. Especially the combination of deep learning (DL) and explicit
input measurements was successful for accurate SOH estimation: Zhang
et al. [7] compared their combined incremental capacity analysis (ICA)
and broad learning system algorithm with other available data-driven
methods. They proved that highly correlating health features from the
IC-curve allowed their method to outperform other algorithms and
reached SOH mean absolute percentage errors (MAPEs) below 0.42%
for three different batteries. In a subsequent study [8] they identified
the difficulties incorporated by varying charging manners and working
conditions for real-world BEVs. Hence, they introduced a method which
solely relies on the raw measurement data from the constant voltage
phase, i.e., the gradually decreasing current. Via their proposed double
correlation analysis several health features are extracted from that
raw sensor data to finally estimate the SOH with a gated recurrent
unit. Again, they reached excellent results with SOH MAPEs below
0.48%. Recently, Zhang et al. [9] focused on the available input data
from partial charging segments during the constant current phase.
With health indicators derived from their newly defined incremental
energy per SOC curve, they have trained a bidirectional long short-term
memory neural network (LSTM) to estimate the SOH. With random
partial charging events at different C-rates (0.5C: 11% to 36%, 0.3C:
3% to 75%, 0.2C: 35% to 82%, 0.1C: 15% to 53%) they have reached
OH mean absolute errors (MAEs) below 0.43%. Dubarry et al. [10]
xplored the usage of synthetic data for model training and subsequent
egradation mode (DM) estimation within photovoltaic systems. They
sed a mechanistic model to generate voltage curves with varying aging
aths and trained several data-driven models on these data. They have
alidated the method with synthetic data from over 10 000 different
egradation paths and reached DM root mean squared errors (RMSEs)
f 2.75%.

In recent years, partial charging data has also emerged as a suitable
nput for OCV reconstruction via DL. Tian et al. [11] introduced a
onvolutional neural network (CNN) that processes the charge amount
rom parts of the daily charging voltage curves at 1 C to estimate the
toichiometries and hence the OCV curve of aged lithium-ion batteries.
ith usage of these raw segments they reached an OCV reconstruction

MSE below 15mV and an SOH estimation error below 1.0%. In the v

2 
ork by Ruan et al. [12] they have used a CNN as a quick analysis
ool to estimate DMs from OCV curves. They developed the method
ully with synthetic data but have shown the real-world applicability
y using partial OCV segments from an experimental battery. With
voltage segment from 3.4V to 4.18V they have estimated the DMs
ith a RMSE of 1.75%. These DMs were further used to reconstruct

he full OCV with a RMSE of 21.05mV. Guo et al. [13] used a similar
pproach where they required partial charging segments at 1C to
stimate partial OCV curves with a LSTM. The partial OCV was fed
nto an optimizer which reconstructed the full OCV with a MAE below
0mV and estimated the SOH with a MAPE below 1.3%. In contrast to
he CNN developed by Tian et al. [11], the proposed LSTM by Guo et al.
13] struggled to directly interpret raw data and, hence, first calculated
ealth-indicators from the charging curves.

Both, CNNs and LSTMs, have specific benefits for battery state
stimation from time-series data: CNNs, which were initially proposed
or computer vision [14], do not require additional feature engineering
nd can process raw data segments. LSTMs, however, are beneficial
or time-series data processing due to their ability to handle sequen-
ial data including internal feedback loops. Specifically in the last
ears, temporal convolutional neural networks (TCNs) [15], which
ombine the benefits from CNNs and LSTMs, have gained attraction
n the field of battery state estimation [16–20]. These new types of
eural networks (NNs) outperform former architectures, eliminate the
eed for cumbersome preprocessing and are optimized for time-series
ata [16]. Without preprocessing, Bockrath et al. [16] have fed raw
ensor data from partial discharging segements into a TCN network
nd reached an overall SOH RMSE for unseen test data of 1.0%. Their
odel outperformed several other NN architectures. In their study the
iddle and upper SOC-range was more suitable for SOH estimation. Li

t al. [17] compared the performance of different NN architectures for
OH estimation using the same dataset as Bockrath et al. [16]. They
roved that TCN-LSTM networks increase the accuracy by more than
6% compared to TCN, LSTM and CNN-LSTM networks, i.e., the MAE
ecreased from 3.11% (TCN), 3.38% (LSTM), 2.78% (CNN-LSTM) to
.5% (TCN-LSTM).

DL, however, is accompanied by challenges such as data dependence
nd limited training data availability [21]. DL models typically require
ast amounts of data to effectively capture complex data patterns. The
raining data must encompass a significant portion of the data space to
nable the model to interpolate between different locations. To address
his issue, transfer learning (TL) has been introduced, eliminating the
equirement for training and test data to be independent and identically
istributed [21]. In the developed TL model by Sahoo et al. [22], they
apped features from the voltage curve to the SOH which lead to

OH estimation errors below 2% for unseen data. A two-layered feed-
orward neural network (FNN) was pretrained with an experimental
ataset. Finally, TL was applied by freezing the first layer and fine-
uning the second layer with other public datasets. Zou et al. [23]
ollowed the same model-based TL approach with a different dataset
nd architecture: They used experimental battery aging data from the
ublic NASA degradation dataset. Source and target domain, however,
ere selected from this dataset which was divided into groups based
n varying usage conditions. Their work, hence, evaluated TL within
he same cell chemistry to new degradation paths. Their NN processed
eatures from the constant current charging voltage curve to the CNN
nput layer. A LSTM layer interpreted the output of the CNN layer
nd passed its output through a FNN layer which produced the SOH

alue. The freezing mechanism was limited to the LSTM layer and the
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amount of training data from the target domain was varied during fine-
tuning. They showed that with limited training data from the target
domain, TL models outperform stand-alone NNs. In contrast, Shen et al.
[24] took a different approach by omitting the freezing mechanism
and instead focused on retuning multiple models to construct an en-
semble model. Their base model consisted of five CNN and three FNN
layers, which were utilized to process the raw voltage, current, and
charge time-series data from partial constant current charging curves
for estimating the SOH. Rather than fine-tuning a single model, the
authors replicated the architecture to create several new models, each
of which was subsequently fine-tuned using different subsets of the
training data domain. Tian et al. [25] finally explored the transferable
knowledge between synthetic and experimental data by creating a CNN
for SOH estimation. They have pretrained the model with synthetic
data from a voltage capacity model, simulating the experimental cell.
Fine-tuning was carried out with 300mV partial charging segments.
They repeated the experiment for three public available datasets and
reached SOH RMSEs of 1.00%, 3.13% and 0.52% for the Oxford, CALCE
and Tongji dataset [25], respectively. Zhou et al. [26] were the first
to apply TL for full OCV reconstruction from daily partial charging
data. With a generative DL model, they successfully applied TL from
different cell chemistries with SOH RMSEs of 0.47% and 2.73% for
nickel cobalt aluminium oxide (NCA) and lithium iron phosphate (LFP)
cells, respectively.

A critical limitation identified in these models is their reliance on
extensive experimental training datasets. While a multitude of public
datasets are available, they may not always align with specific research
objectives or provide the ideal conditions for model training. Zhou et al.
[26] highlighted the potential for TL in OCV reconstruction, a topic that
has received limited attention in the existing literature.

The present study introduces a novel approach for OCV reconstruc-
tion and SOH estimation utilizing a TL framework with a TCN-LSTM
architecture. This approach is distinctive in its exclusive use of syn-
thetic data from a different cell derived from partial voltage charging
curves to train the model. Synthetic data for an automotive NCA cell
are generated using a mechanistic model approach, with the dataset
partitioned according to different voltage windows. The use of synthetic
data allows fast data generation and detailed analytics. A base model
is trained on this dataset and optimized using Bayesian optimization
techniques. Subsequently, TL is applied to four distinct use cases (UCs),
each characterized by varying quantities of experimental, measured
nickel manganese cobalt oxide (NMC) cell data, to evaluate the efficacy
and constraints of TL. The performance of TL models is benchmarked
against models trained solely on experimental data for each UC, thereby
assessing the influence of TL on model outcomes. The evaluation fo-
cuses on the effects of varying C-rates and voltage windows. Notably,
we determine from a field data analysis that the average BEV home
charging pattern is compatible with the proposed algorithm. Addi-
tionally, the study explores the influence of the source domain on
TL by incorporating two alternative synthetic datasets for base model
training, one based on a LFP cell and the other entirely artificial. This
allows to interpret the hidden features in voltage trajectories necessary
to reconstruct the OCV. We give evidence that the shift of plateaus in
the voltage curve is the main information captured by DL and especially
TL models.

To our knowledge, this is the first study to employ synthetic data
as the source domain for TL between varying cells in the context of
OCV reconstruction, as well as the first to investigate TL from wholly
artificial cells. This approach provides novel insights into the learning
dynamics of DL models.

2. Theory

The proposed NN estimates the full OCV curve from constant cur-
rent partial charging segments. The estimated SOH is finally calculated
from that OCV curve. The NN, hence, only processes the raw voltage
3 
Fig. 1. Fundamentals of the mechanistic model approach from Dubarry et al. [6].
The C-rate refers to the full-cell capacity measurable during a constant current charge.
(a) To generate constant current charging curves at different C-rates the model relies
on half-cell potential measurements at different C-rates. (b) The user has to define the
degradation parameters, which results in a scaling and shifting of the half-cell potential
curves and finally output the voltage curve as the difference between the positive and
the negative half-cell potential curve.

curve, the capacity throughput during this partial charging event and
the applied C-rate. The utilization of machine learning (ML) tech-
niques for battery modeling and state estimation, however, is currently
constrained by the substantial data prerequisites. The application of
TL on synthetic data presents an alternative approach to circumvent
the necessity for expensive aging experiments. This section, hence, is
mandatory to follow the subsequent method section and introduces the
synthetic data generation model and elucidates the fundamentals of TL.
In the remainder of this paper, we refer to the following definition for
the SOH: The SOH is defined as the measured charge capacity at a low
C-rate, e.g., C∕25, relative to its nominal capacity at BOL. The amount
of charge is measured between lower and upper voltage limits.

SOH =
𝐶meas,C/25

𝐶N
(1)

We further simplify the OCV definition to include pseudo-OCV mea-
surements at C-rates as low as C∕25.

2.1. Mechanistic model for battery data generation

The mechanistic model approach, originally proposed by Dubarry
et al. [6], posits that the OCV of a lithium-ion battery throughout
its lifespan can be determined by the disparity between the half-cell
OCP curves of the positive and negative electrode [27,28]. The shape
of the OCV is primarily influenced by a relative shift and scaling of
the OCPs. If the degradation-induced impedance rise is disregarded,
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Fig. 2. The main building blocks of LSTM ((a) adopted from Goodfellow et al. [29]) and TCN ((b), (c) adopted from Bai et al. [34] and Bockrath et al. [16]) networks. (a)
emory cell of a LSTM network. (b) Example for one dilated causal convolution within a residual block for a kernel size of 2 and dilation factors 𝑑 = 8, 4, 2. (c) TCN residual

block with the optional 1 × 1 convolutional in case of different dimensions between input and output. ReLU is the most common activation function which only passes positive
input, i.e., 𝑓ReLu(𝑥) = max (0, 𝑥).
𝐹
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this concept can be extended to voltage responses to applied current,
allowing for the reconstruction of voltage curves at higher C-rates using
the measured half-cell potential curves at corresponding C-rates [6].
To generate data, the mechanistic model employs pristine half-cell
potential curves at various C-rates, as illustrated in Fig. 1(a). In the
mechanistic model, the degradation rate is determined solely by the
user-defined shifting and scaling parameters, as illustrated in Fig. 1(b).
This fundamental theory allows the simulation and generation of mass
synthetic data with predefined DMs and SOH based on real measure-
ments. For a more comprehensive understanding of these alignment
parameters, readers are encouraged to refer to the works of Dubarry
et al. [6] or Hofmann et al. [5]. In our example (Fig. 1), the model
generates the OCV curve from the OCP measurements, along with
the SOH. This implies that the process of constructing the OCV curve
from Fig. 1(b) can also be applied to C-rates of C∕10 and C∕2. Conse-
quently, the model can be utilized to produce constant current voltage
curves at any given C-rate, provided that pristine half-cell potential
measurements are available and overpotentials are linear.

2.2. Neural networks for battery state of health estimation

With the advances in ML, more network architectures arise to esti-
mate the SOH from battery cycling data. The simplest architecture in DL
is the FNN, which consists of multiple neurons and direct connections
between layers. It can be described as a function approximator 𝐲 =
𝑓 (𝐱;𝝑), where 𝐲 represents the approximated value (e.g., SOH), 𝐱 repre-
sents arbitrary features extracted from battery aging data (e.g., voltage
level or C-rate), and 𝝑 represents the hyperparameters [29,30]. The
FNN does not have any feedback loops and information flows only in
a forward direction.

In contrast, if the network includes feedback loops between neurons
or layers, it is known as a recurrent neural network (RNN). RNN are
particularly suitable for handling sequential data, such as time-series
data [29].

LSTMs, as in Fig. 2(a), form a specific type of RNN. First introduced
by Hochreiter and Schmidhuber [31], they have gained immense pop-
ularity in the field of battery diagnosis [32,33]. These memory cells
(Fig. 2(a)) are compact, self-regulating networks that possess input,
output, and forget gates. By means of an internal feedback loop, the
LSTM mechanism adjusts the weights based on the temporal history.
Consequently, the network determines both the type and quantity of
memory to be stored or discarded [29].

Similar to RNNs, CNNs have recently gained increased attention in
the field due to their ability to process grid-like data, i.e, multiple time-
series data streams, without preprocessing [29,35,36]. Filters convolve
over the 𝑛-dimensional input and pass the results to the next layer.
4 
These filters allow the inclusion of the present time-step, as well as
historical data [35,36]. Some adaptions [17,23,37] leverage the feature
extraction power of CNNs sequential to the feature processing ability
of LSTMs to build accurate SOH estimation models.

TCNs were proposed to couple the benefits from CNNs and LSTMs:
Lea et al. [15] introduced the novel TCN initially for action segmenta-
tion and detection. This special type of CNN uses causal convolution to
produce output with the same length as the input, similar to RNNs [16].
TCNs outperform RNNs in terms of training efficiency, model size,
model accuracy and do not require data preprocessing [16]. Bai et al.
[34] evaluate the architecture for a variety of use cases against common
RNN architectures and propose TCNs as a natural starting point for
sequence modeling, i.e., �̂�0,… , �̂�𝑇 = 𝑓 (𝑥0,… , 𝑥𝑇 ). Fig. 2(b) and (c)
illustrate the main building blocks of a TCN. Causal convolution leads
to an output with same length as the input and avoids leakage from
future information 𝑥𝑁+1 to the past �̂�𝑁 [16]. The output at time �̂�𝑇
is only convolved with input data at time 𝑇 and earlier 𝑥0,… , 𝑥𝑇 . In
contrast to CNNs, which use centered kernels, TCNs employ kernels
where the rightmost value of the kernel is the considered time [16,34].
When it comes to DL or large receptive fields, causal convolution
leads to many additional weights and stabilization problems. Dilated
convolution (Fig. 2(b)) solves this problem by dilating the kernel of
size 𝑘 by the dilation factor 𝑑. The dilated convolution operation 𝐹 ()
on the element 𝑠 is

(𝑠) = (𝑥 ∗𝑑 𝑓 )(𝑠) =
𝑘−1
∑

𝑖=0
𝑓 (𝑖) ⋅ 𝑥𝑠−𝑑⋅𝑖 (2)

for a 1D-sequence input 𝑥 ∈ R𝑛 and the filter 𝑓 ∶ {0,… , 𝑘 − 1} → R.
The final receptive field per layer is then calculated by

R = 2𝑙(𝑘 − 1) (3)

where 𝑙 is the number of layers. Hence, this allows the TCN to pro-
ess exponentially large receptive field which is especially helpful for
fficient processing of long time-series data [16,34]. Finally, a residual
lock (Fig. 2(c)) allows to learn modifications to the identity mapping
nstead of the entire transformation [16]. One residual block consists
f stacked dilated causal convolutions, ReLU and dropout blocks. An
ptional 1 × 1 convolution processes the input in case of differing
imensions between input and output. The output 𝑜 of a residual block

is the applied transformation  added to the input 𝑥 of the block [34]:
𝑜 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑥 +  (𝑥)) (4)
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2.3. Fundamentals of transfer learning

In the domain of TL it is essential to establish a mathematical
understanding of its principles. While DL models encounter challenges
related to data dependence and insufficient training data [21], TL
aims for a solution. This approach eliminates the necessity for training
and test data to adhere to the assumption of being independent and
identically distributed.

To understand the mathematical definition of TL we require some
basic annotations and refer to the publication by Tan et al. [21]
and Weber et al. [38]: A domain  = {𝜒, 𝑃 (𝑋)} is defined by the
feature space 𝜒 and the edge probability distribution 𝑃 (𝑋), where
𝑋 = {𝑥1,… , 𝑥𝑛} ∈ 𝜒 . A task  = {𝑦, 𝑓 (𝑥)} consists of the label space 𝑦
and the target prediction function 𝑓 (𝑥), which can be also understood
as the conditional probability function 𝑃 (𝑦 ∣ 𝑥).

Definition 2.1 (Transfer Learning). TL aims to enhance the performance
of the predictive function 𝑓 () for the main learning task 𝑡 by lever-
aging latent knowledge discovered from the supplementary learning
task 𝑠 and its associated dataset 𝑠, where 𝑠 ≠ 𝑡 and/or 𝑠 ≠ 𝑡.
Typically, the size of 𝑠 is significantly larger than 𝑡, i.e., 𝑁𝑠 ≫ 𝑁𝑡.

In most cases – and also in this paper – TL refers to domain adaption
(DA), i.e., 𝑠 ≠ 𝑡 [38]. In the literature [21,38], TL for time-series
data consists of three categories:

Instance-based TL assumes that instances from the source and target
domain are similar. Hence, selected or reweighted samples from the
source domain are included in the TL process.

Feature-based TL transfers both domains into the same feature repre-
sentation, i.e., uses the same features for both datasets.

Model-based TL is the most common form of TL and reuses a pre-
trained model in the source domain for target model building. In this
context, several possibilities exist: Parameter-based TL refers to only
reusing the learned parameters. Ensemble TL describes the stacking
of a pretrained model with a blank model for the target domain.
Model controlled TL changes the objective function for retraining.
Finally, adversarial-based TL utilize generative adversarial networks
[21,38].

In the context of battery state estimation and OCV reconstruction
mostly model-based TL exists [22–24,26]. Hence, we elaborate model-
based TL for SOH estimation: A straightforward way to deploy TL
for SOH estimation is partial freezing and fine-tuning, a strategy used
within parameter-based TL, as in the work by Sahoo et al. [22]. Hence,
an initial model is trained on the source domain, while just a subset of
the pretrained model is retrained on the target domain. The remaining
frozen parts of the retrained model do not change their parameters,
i.e., the weights of the neurons, during retraining. The retraining
process, also known as fine-tuning, typically involves reducing the
learning rate and/or limiting the number of epochs to allow only slight
modifications of the model parameters. Both mechanism, freezing and
fine-tuning, hinder the TL model from catastrophic forgetting [38].

In summary, most researchers choose model-based TL approaches
with partial freezing and/or fine-tuning to deploy their TL battery SOH
estimation models.

2.4. Performance metrics

In our work we always refer to the MAPE for SOH estimation and
to the MAE for OCV reconstruction accuracy. The MAPE and MAE are
defined as follows:

MAPE = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

𝑦𝑖 − �̂�𝑖
𝑦𝑖

|

|

|

|

(5)

AE = 1
𝑁
∑

|

|

𝑦𝑖 − �̂�𝑖|| (6)

𝑁 𝑖=1
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In Eqs. (5) and (6), 𝑦𝑖 represents the ground truth, i.e., the measured
OCV or SOH, whereas �̂� corresponds to the estimation; 𝑁 is the total
number of samples. When considering the OCV reconstruction error
MAEOCV, it is crucial that both 𝑦𝑖 and �̂�𝑖 must be vectors of the same
length. Consequently, if the model outputs an OCV that is longer
or shorter than the ground truth, the error is only calculated at the
overlapping section. Eqs. (5) and (6) can be modified for our study as
follows:

MAPESOH = 1
𝑁

𝑁
∑

𝑖=1

|

|

|

|

|

SOHmeas,𝑖 − SOHest,𝑖
SOHmeas,𝑖

|

|

|

|

|

(7)

MAEOCV = 1
𝑁

𝑁
∑

𝑖=1

|

|

OCVmeas,𝑖 − OCVest,𝑖|| (8)

3. Materials and method

The efficacy of ML techniques is heavily reliant on the underlying
data and its distribution. A significant limitation of data-driven ap-
proaches for SOH estimation is the requirement for numerous aging
experiments across multiple aging paths. Performing such experiments
is both expensive and time-consuming. TL from synthetic data presents
a promising avenue for developing ML methods with limited data.
Given the crucial role of data sources, this paper presents them first,
followed by a detailed exposition of the investigated TL approach.

3.1. Data

This work utilizes synthetic data created by a mechanistic model
tool. The simulation toolbox relies solely on the measured pristine
half-cell potential curves at various C-rates. Instead of modeling the
physico-chemical degradation mechanisms in numerical equations it
uses the simplified theory of DMs [6]. In this work, we consider loss
of active material at the anode (LAMNE), loss of active material at the
cathode (LAMPE) and loss of lithium inventory (LLI). Similar to the
work of Dubarry et al. [6] the used approach shifts and scales the
pristine half-cell potential curves to set specific DMs. One simulation
always includes the charging profile for the set C-rate and also the OCV,
because the half-cell potential curves are captured for various C-rates.
For a detailed description of DMs and their utilization for voltage curve
generation we refer to a previous publication [5].

The simulation data is based on pristine half-cell potential measure-
ments of a prismatic automotive NCA-graphite cell with 70.2Ah at an
ambient temperature of 25 °C. The layer thicknesses are 𝑡NE = 107 μm
and 𝑡PE = 62.5 μm, respectively. The initial loading ratio (LR) and
SOCPE offset (OFS) are 0.95 and 10.6%. For the concept of LR and OFS
we refer to the work of Dubarry et al. [6]. The simulation is carried
out by varying all three DMs: LAMNE and LAMPE are varied between
0% to 15% in steps of 3.75%. LLI is varied in steps of 5% between
0% to 20%. By setting this generic degradation parameters, in total
5 ⋅ 5 ⋅ 5 = 125 voltage curves exist per C-rate. Per voltage curve, the
corresponding OCV curve is available, too. All voltage and OCV curves
are cut to the range from 3V to 4.25V.

The experimental dataset, comprising 10 commercial INR18650-
MJ1 NMC-silicone/graphite cells (LR: 0.90, OFS: 11%, silicon mass ratio
in anode between 1wt.% to 5wt.%), is taken from Schmitt et al. [4]
and preprocessed to only include the constant current sections. The
investigated cells were partioned into five different aging studies and
hence different aging paths, as listed in Table 1. Between degradation
phases, all cells underwent an OCV measurement and a charging rate
test. The OCV measurement refers to a constant current charging mea-
surement with C∕30 and the charging rate test data, used within this
work, refers to the constant current measurements at 0.26C ≈ C∕3.85,
C∕2 and 1C. The C∕3.85 charge is equivalent to a constant-power 11 kW
charge for a 42 kWh storage with a 96s36p configuration, to evaluate
the applicability of the proposed algorithm by Schmitt et al. [4] for real

use cases. Again, the SOH refers to the OCV measurement. Due to the
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Table 1
Aging conditions of the experimental dataset, taken from Schmitt et al. [4]. All
degradation phases ran at an ambient temperature of 25 °C.

Cell number Aging conditions

A1, A2 2.5V–4.2V cycling
B1, B2 2.5V–4.0V cycling
C1, C2 3.6V–4.2V cycling
D1, D2 WLTP cycling
E1, E2 Calendar aging at 3.7V

Fig. 3. Visualization of the synthetic NCA and the experimental NMC dataset. The
pper right figure shows the scatter plot and the lower left figure visualizes the kernel
ensities. Both refer to the first 𝑦-axis on the left. The second 𝑦-axis on the right side
efers to the cumulative distribution plots in the diagonal, in golden color. All voltage
urves at any given C-rate are illustrated. (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)

ncreasing minimal voltage at begin of charge, all samples are cut to
he voltage-range between 3.24V to 4.2V.

The synthetic dataset is visualized together with the experimental
ataset in Fig. 3. For both datasets, the SOH for a given voltage curve
efers to the accumulated charge between the lower and upper voltage
imit during an OCV measurement. In both datasets, all samples with
SOH below 70% are excluded due to our definition of the end of life

EOL) at 70% SOH. While the SOH range seems evenly distributed for
he experimental dataset, the predefined degradation states are visible
n the synthetic SOH trajectory. Due to the similar cathode material of
oth datasets, the voltage distribution looks similar. This is, as well,
isible in the kernel densities and the scatter plot.

Fig. 4 provides a more comprehensive analysis of the data. As shown
n Fig. 4(a), the synthetic dataset encompasses charging trajectories
anging from C∕15, C∕10, C∕6, C∕3, C∕2 and 1C, while the OCV is
stablished through a constant current-charging process with C/25.
onversely, the experimental dataset in Fig. 4(b) includes constant
urrent-charging events at C∕3.85, C∕2, and 1C. In contrast to the syn-
hetic dataset, the OCV measurement is obtained from a C∕30 charge.
he voltage curve exhibits an increase for higher currents primarily
ue to the ohmic overpotentials, which display a direct correlation
ith the applied current. Consequently, the upper voltage limits are

eached earlier, resulting in a shorter constant current-phase. In this
tudy, we exclude the CV-phase from all calculations and base our
OH and SOC calculations solely on the constant current-phase. The
OH always refers to the full charge amount between the voltage

imits in the OCV measurement. Fig. 4(c) and (d) illustrate pristine m

6 
nd aged OCV curves and the correlation between SOH and the OCV
rajectory. The observations can be categorized into two fundamental
spects of battery aging: capacity fade and impedance rise. Capacity
ade is directly evident in Fig. 4(c) and (d) by the earlier reached
utoff voltage. In the synthetic dataset, the capacity is modeled by
he DMs. Impedance rise is only evident in the experimental datasets,
isualized in Fig. 4(d). Impedance rise also contributes to reaching the
utoff voltage earlier. Impedance rise over lifetime is not included in
he synthetic dataset because it aggravates the clear interpretation of
lateau shifting and scaled OCPs. Hence, in this paper we focus on the
ffect of capacity drop and TL, while the influence of impedance rise
ill be discussed in future work.

Both datasets were captured at 25 °C to focus on the clear effect
f transferred knowledge from different cell chemistries, C-rates and
oltage windows. The real-world applicability of the method, however,
s still given due to negligible temperature dependencies of the voltage
nd OCV curve between temperatures from 20 °C to 40 °C [39].

To further evaluate the data requirements for model fine-tuning
nd especially the urge to cover most of the dataset, several UCs are
efined. The described UCs divide the experimental dataset for fine-
uning into differing data segments, which vary in their difficulty based
n content and amount of training data. This separation aims to explore
he boundaries of NNs and especially TL for battery state estimation.
ig. 5 visualizes the training, validation and test dataset per UC. The
Cs for TL can be differentiated based on two factors: Firstly, they
ary in terms of the included charging curves at different C-rates.
econdly, they differ in terms of the included degradation path. The
ata split comprises four distinct UCs, namely UC1 (Fig. 5(a)), UC2
Fig. 5(b)), UC3 (Fig. 5(c)), and UC4 (Fig. 5(d)). These UCs cover
ifferent boundaries of the training dataset. UC1 to UC3 encompass
he entire SOH range, including the lowest and highest C-rate. In
ontrast, UC4 only includes the entire SOH range for one specific C-
ate. Approximately 67% of the entire experimental dataset is covered
y UC1, while UC2 covers 40%, UC3 covers 13%, and UC4 covers
nly 6.6%. In UC1, all cells and charging curves are used for training,
xcept for the curves at C∕2. UC2 further complicates the TL process by
xcluding aging path B, as well as one cell each from aging path C and
from the training dataset. Similarly, UC3 reduces the training dataset

ven further by excluding the cells from aging path D and E completely.
he most challenging UC4 solely includes the charging curves at C∕3.85
rom cell A2 and C2 for training.

.2. Default charging window

To evaluate the appropriate charging window for analysis, we col-
ect customer field data comprising 1.9 million BEV AC-charging events
onducted at residential locations. The dataset includes the correspond-
ng SOC windows of those charging events. Based on the findings
epicted in Fig. 6, the most frequently utilized charging window is
dentified, which serves as the focus of our study. The distribution of
tart-SOC values is remarkably uniform, with the mean occurring at
pproximately 49%.

To establish a default start-SOC, we opt for the minimum start-SOC
hat encompasses at least 25% of all charging events. Consequently, a
tart-SOC of 30% is selected. Analysis of the end-SOC values reveals
wo prominent peaks at 80% and 100% SOC, resulting in a mean value
f 85%. Consequently, this value is adopted as the default end-SOC.

In conclusion, we establish a default SOC charging window span-
ing from 30% to 85%. This window serves as a benchmark for our
tudy and further demonstrates the practicality and applicability of our

ethodology to real-world charging events at resident locations.
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Fig. 4. Influence of C-rate and SOH on the voltage trajectory for the synthetic NCA and the experimental NMC dataset. (a) Influence of C-rate: Synthetic dataset. (b) Influence of
C-rate: Experimental dataset. (c) Influence of SOH on OCV: Synthetic dataset. (d) Influence of SOH on OCV: Experimental dataset.
Fig. 5. Definition of different UCs for model comparison: (a) UC1, (b) UC2, (c) UC3
and (d) UC4. The UCs are distinctive in their used curves from different cells and
C-rates of the experimental dataset for training data, visualized by different colors. In
UC3 and UC4 a random 33% subset of the training data is used for validation. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

3.3. Method

The method is summarized in Fig. 7(a), which describes the steps
necessary to build the transfer learned neural network (TL-NN) and
7 
Fig. 6. Start- and end-SOC for 1.9 million BEV AC-charging events. The default partial
charging window is selected from the SOC start point with at least 25% share. (In
comparison: The average start-SOC is 49%.) The end-SOC is the average for all charging
events. The default partial charging window is from 30% to 85%.

the reference EXP-NN. The EXP-NN is only trained and evaluated with
the experimental dataset to evaluate the influence of TL. In the main
method, the TL-NN is pretrained with the NCA synthetic dataset, hence
only referred to as TL-NN. For discussing the limitations and benefits
of TL, and the exploration of the underlying transferred knowledge,
additional TL-NNs are set up with a LFP and an artificial (ART) cell.
These developed models are referred to as TL (LFP) and TL (ART)
model, respectively. Both datasets undergo preprocessing, are normal-
ized and split to training, test and validation sub-datasets as indicated
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Fig. 7. Description of the TL approach. (a) Overview of the applied method and the
differentiation between the TL and the reference EXP-NN path. The main TL path is
carried out with the NCA cell. (b) Example for three different partial voltage segments
extracted from four different constant current voltage curves.

in Fig. 5. Both models are optimized with Bayes tuning to yield the
best architecture. The TL-NN is subsequently pretrained with the full
synthetic dataset. The pretrained TL-NN and the not-trained EXP-NN
are finally fine-tuned/trained with partial amounts of data from the
UCs, defined in Fig. 5. Both models are evaluated with the MAESOH
and MAEOCV. We choose a similar approach as Bockrath et al. [16]
and snipped the full voltage charge curve into multiple partial segments
based on voltage boundaries in 200mV steps, as in Fig. 7(b). In Fig. 7(b)
𝐶full refers to the charged capacity during a full charge at the given
C-rates. The example can be applied to every voltage curve and any C-
rate. For the upper voltage segments above 4V, the step-size is lowered
to 100mV, in order to allow more variation in the final end SOC. Instead
of just three partial segments we utilize more steps and extract 19
different voltage windows from one simulated full voltage curve. From
the experimental dataset, we extract 15 different voltage windows per
full voltage curve. This generates more training data and allows a more
8 
Table 2
Selected voltage windows from the simulation and experimental dataset during
preprocessing.

𝑉min 𝑉max 𝑉min 𝑉max

Exp. Data

3.25V 3.8V

Sim. Data

3.0V 3.8V
3.4V 4.0V 3.2V 4.0V
3.6V 4.1V 3.4V 4.1V
3.8V 4.2V 3.6V 4.25V

3.8V

detailed analysis of the sensitivity to different voltage segments. Table 2
summarizes the chosen minimum and maximum voltage values 𝑉min,
𝑉max from all selected windows. All possible combinations, e.g., 𝑉min =
3.25V and 𝑉max = 4.2V, are selected. A partial charge window is only
extracted if 𝑉min < 𝑉max. Hence, with this approach, in real-world
scenarios arbitrary charging data can be snipped into the respective
voltage segments if and only if the start voltage is below 3.6V and the
end voltage is above 3.8V or the start voltage is below 3.8V and the
end voltage is above 4.0V.

All compared networks are trained with the same feature set com-
prising of the raw partial voltage curve, the partial charge curve (which
is defined to start at 0), and the applied C-rate. The dimension of each
feature is R1×100 which requires a downsampling for all data sources.
The scalar C-rate is also mapped to a R1×100 vector to match the di-
mensions. The whole dataset undergoes normalization to lie in a range
between zero and one for further processing. This has been shown to
increase NN performance and efficiency [40]. Note that both datasets,
the source and target dataset, are normalized individually. During every
tuning or training process, the dataset is split into training, validation
and test data as shown in Fig. 5. To ensure a representative validation
dataset for UC3 and UC4, these datasets are selected as a random 33%
subset of the training dataset.

TCNs have been shown to be advantageous for time-series modeling
because they work as a type of automated feature extractor from raw
data [34]. Many authors [16–20] have, besides that, already proven the
ability to employ TCNs for SOH estimation. In our work, we combine
TCN layers as a type of feature extractor with subsequent LSTM layers
as a type of feature interpreter. Other works [17,23,37] show the
mutual support of CNN with LSTM, and even TCN with LSTM. We
select fine-tuning as our approach due to the similarity of both datasets.
The TCN layer(s) extract similar features for both the source and target
domains, while the LSTM layer(s) interpret these features in a similar
manner. Hence, only small modifications of the network should be
necessary during TL. To accomplish this, we reduce the learning rate
and retrain the network for a smaller number of epochs, allowing only
minor changes in the network configuration. The proposed method
can, of course, be applied to different NN architectures as well. It is
important, however, to note that the comparison of these architectures
is beyond the scope of this publication.

Before applying TL, the NNs for both the experimental and syn-
thetic datasets are optimized to their respective best performance using
Bayesian hyperparameter tuning. Bayesian optimization is a highly
effective hyperparameter tuning method as it enables exploration of a
large search space with minimal trials [41]. This method employs a
surrogate model to minimize the validation loss for different hyperpa-
rameter sets. The algorithm prunes unpromising directions and selects
the most promising hyperparameter combination for its subsequent
trial, thereby requiring only a few trials to achieve optimal perfor-
mance. Table 3 lists the search space of the hyperparameter tuning. The
batch-size is fixed to 128 and the number of epochs is set to a maximum
of 500 with early stopping once the validation loss does not decrease for
50 consecutive epochs. Default values are used for all hyperparameters
not listed in Table 3. We use the Adam optimizer with the default learn-
ing rate of 1 × 10−3. The last layer is always a LSTM layer with 2 units to
guarantee correct output dimensions. To optimize the performance of
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Table 3
Search space for Bayesian hyperparameter tuning, where 𝑁 refers to the layer number.
Hence, for every additional TCN or LSTM layer, the respective hyperparameters can be
tuned individually.

Hyperparameter Definition

TCN layers 𝜆TCN ∈ 𝛬TCN
with 𝛬TCN ∶= {𝜆TCN ∈ N; 1 ≤ 𝜆TCN ≤ 3}

Kernel size 𝜆K,𝑁 ∈ 𝛬K
with 𝛬K ∶= {𝜆K ∈ N; 1 ≤ 𝜆K ≤ 8}

Filter size 𝜆F,𝑁 ∈ 𝛬F
with 𝛬F ∶= {𝜆F ∈ N; 8 ≤ 𝜆F ≤ 128}

LSTM layers 𝜆LSTM ∈ 𝛬LSTM
with 𝛬LSTM ∶= {𝜆LSTM ∈ N; 0 ≤ 𝜆LSTM ≤ 2}

Units 𝜆U,𝑁 ∈ 𝛬U
with 𝛬U ∶= {𝜆U ∈ N; 8 ≤ 𝜆U ≤ 128}

Dropout 𝜆D,𝑁 ∈ 𝛬D
with 𝛬D ∶= {𝜆D ∈ D; 0 ≤ 𝜆D ≤ 0.5}

our model, we explored a large search space. This includes tuning the
number of TCN layers 𝜆TCN (range 1 to 3) with the number of filters
𝜆F,𝑁 (range 8 to 128) and kernel size 𝜆K,𝑁 (range 1 to 8), as well as
the number of LSTM layers 𝜆LSTM (range 0 to 2) with the number of
units 𝜆U,𝑁 (range 8 to 128) and dropout 𝜆D,𝑁 (range 0 to 0.5) between
layers. By considering a wide range of hyperparameters, we aim to find
the optimal configuration for our specific task. The optimization runs
for 100 trials with the KerasTuner [42] and the goal to minimize the
validation loss. To tune the architecture of the reference EXP-NN, we
select cells with C-rate values of 1C and C∕3.85 for training. Cells B2 and
C1 with C-rate C∕2 are chosen for validation, while the remaining cells
serve as the test dataset to assess the model’s generalization ability.
This train/test/validation split, optimized for UC1, includes training
data from other UCs, enabling the architecture to learn patterns in this
data. Fig. 8(a) illustrates the optimized architecture. It consists of an
input-TCN layer combined with three LSTM layers and dropout applied
between them.

Similar to the EXP-NN, we split the synthetic dataset based on
C-rates to create training, testing, and validation datasets.

All curves with C∕6 are used for validation, while all curves with
C∕3 are used for testing, and the remaining data is used for training.
The resulting model architecture is depicted in Fig. 8(b). Unlike the
EXP-NN, this architecture only includes one TCN layer and no addi-
tional LSTM layers besides the output layer. The synthetic dataset is
cleaner and does not include any measurement noise, allowing the
model to learn data patterns quickly without the need for a complex
architecture.

For all four UCs, both the EXP-NN and TL-NNs utilize the same
data split, as outlined in Fig. 5: In UC1, cells B2 and C1 from the
training dataset are selected as the validation data. In UC2, cell E2
from the training dataset is chosen. For UC3 and UC4, a random subset
comprising 33% of the training data is used as the validation dataset
to avoid further reduction of the training data space.

The EXP-NN trains in every UC for a maximum of 500 epochs
with early stopping once the validation loss does not decrease for 50
consecutive epochs. The training runs for 250 epochs for UC1, 442
epochs for UC2, 500 epochs for UC3 and 471 epochs for UC4.

To achieve optimal learning, the base synthetic model is initially
trained with the complete synthetic dataset before TL. A random subset
comprising 33% of the data is used for validation during this training
phase. The base model successfully achieves MAPESOH and MAEOCV
values below 1% and 10mV, respectively, for all samples across differ-
ent C-rates. In contrast to the pretraining phase, the objective of TL is to
make marginal modifications to the parameters of the base model. This
is accomplished by setting the learning rate to 1 × 10−6 and training for
only 200 epochs.
9 
Fig. 8. Final architecture of the tuned (a) EXP-NN and (b) synthetic model / TL-NN
and the corresponding dimensions of output data from each layer with 𝑛 as the number
of samples. In the TCN-layers the first number refers to the kernel size and the second
number to the filter size.

4. Results and discussion

The present study aims to evaluate the benefits and limitations of
TL, with the UCs defined in Fig. 5 guiding the subsequent discussion.
While the EXP-NN is expected to perform comparably to the TL-NN
when sufficient training data is available, the TL-NN is expected to
outperform the EXP-NN in all other cases. In our approach, the cell
chemistries used within the target and source domain are similar. Due
to the underlying theory of the mechanistic model approach, the sole
information of plateau shifting along degradation should be enough
to reconstruct the OCV. Hence, the possibilities of TL from other cell
chemistries is discussed in the latter subsection. We even designed
a purely artificial synthetic dataset (ART) from self-designed half-cell
potential curves to prove this assumption.

4.1. Benchmark

The evaluation of the UCs is based on the models derived from the
Bayes optimization (Fig. 8). These UCs vary in terms of the amount and
content of training data. Table 4 provides a summary of the results,
with a focus on the MAEOCV and MAESOH for reconstruction from
partial segments between 3.6V to 4.1V. The voltage window is selected
because it represents the available charging window from 30% to 85%
at BOL, extracted from Fig. 6. Hence, Table 4 gives realistic results for
possible applications.

While the more complex EXP-NN still achieves reasonable results
for UC1 and UC2, it worsens drastically for the remaining UCs. In a
similar manner, the advantage of the simpler TL-NN gets more visible
once the training data for fine-tuning gets more and more limited.
This, however, also implies the limitations of TL for sparse fine-tuning
datasets which do not cover the boundaries of the target domain. For
all UCs, the models are evaluated within different partial charging
segments.
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Fig. 9. Results for UC1: (a), (b) EXP-NN, (c), (d) TL-NN. (a) Average SOH error for the test datast with the reference EXP-NN. (b) Average OCV error for the test datast with the
reference EXP-NN. (c) Average SOH error for the test datast with the TL-NN. (d) Average OCV error for the test datast with the TL-NN.
Table 4
Performance comparison of the EXP-NN and the TL-NN for different UCs in the voltage
window between 3.6V to 4.1V. The UCs differ in the amount of training data for the
training/fine-tuning process.

MAPESOH MAEOCV

C∕3.85 C∕2 1C C∕3.85 C∕2 1C

UC1 EXP-NN – 2.0% – – 21mV –
TL-NN – 1.3% – – 20mV -

UC2 EXP-NN 2.8% 4.9% 2.5% 18mV 18mV 15mV
TL-NN 0.6% 2.0% 1.1% 8.0mV 22mV 10mV

UC3 EXP-NN 7.2% 2.9% 3.3% 27mV 22mV 18mV
TL-NN 0.5% 2.2% 0.8% 7.0mV 20mV 8.0mV

UC4 EXP-NN 1.2% 6.7% 20.4% 15mV 140mV 280mV
TL-NN 0.9% 6.8% 17.0% 7.0mV 31mV 25mV

4.1.1. Use Case 1: Retraining from all cells at two C-rates
Fig. 9 illustrates the performance of both models across different

partial charging segments. It is evident that both models exhibit higher
accuracy for wider voltage-ranges. Interestingly, the EXP-NN shows a
decrease in performance specifically for the partial charging segments
starting at 3.4V, while the TL-NN does not display this trend. This
observation suggests that TL may have been successful in improving the
performance of the TL-NN for these segments. The TL-NN consistently
outperforms the EXP-NN across all voltage segments, except for the
range between 3.6V to 4.2V. Notably, it becomes evident that the lower
charging segment, starting at 3.25V or SOC = 0%, is sufficient for
reconstructing the OCV with a MAE below 10mV, even with a lower
upper voltage limit. This voltage window, spanning from 3.25V to 3.8V,
corresponds to a SOC window between 0% and 30% to 50% over the
battery’s lifetime.
10 
4.1.2. Use Case 2: Retraining from six cells at two C-rates
The results for UC2 are presented in Appendix A.1, Fig. A.14. We

train and fine-tune the models using only 40.4% of the experimental
dataset, with training data consisting of samples with C-rates of C∕3.85
and 1C. The TL-NN outperforms the EXP-NN in terms of SOH and
OCV accuracy. Table 4 shows that the TL-NN performs slightly worse
by 4mV for the test dataset at C∕2 and in the voltage-range between
3.6V to 4.1V. The TL-NN, however, still achieves reasonable results.
Notably, the TL-NN’s performance for C∕2 remains consistent compared
to UC1, even with limited training data. On the other hand, the EXP-NN
exhibits worsened SOH accuracy with a MAPE of 4.9%. Both models
demonstrate a trend of better performance for wider voltage windows.
Similar to UC1, we obtain the best results with a low starting voltage
of 3.25V, even with limited voltage windows. However, the accuracy
decreases for the upper voltage segment, with an MAEOCV above 30mV.
This is mainly due to two main factors: First, the low voltage segments
include the steepest gradient at the begin of charge which allows ac-
curate estimation of the anode degradation. Second, the lower voltage
segments include more and significant gradient changes, as can be seen
in Fig. 4. This effects provide useful information for the developed NNs
and hence increase the reconstruction accuracy.

4.1.3. Use Case 3: Retraining from two cells at two C-rates
UC3 further reduces the experimental training data to only 13.2%

at two C-rates. Appendix A.2 presents the performance matrix for
different voltage windows in Fig. A.15. The TL-NN exhibits nearly the
same accuracy as in the previous UCs. Even for the test data at C∕2
and between 3.6V to 4.1V, as shown in Table 4, the TL-NN performs
comparably. The TL-NN outperforms even its own previous realization
for UC1, owing to the larger amount of test data from the same C-
rate, as revealed in Table 4: The TL-NN performs significantly better
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Fig. 10. Evaluation of the EXP-NN and the TL-NN for UC3 and the whole test dataset.
ne data point corresponds to the average estimation within a 2% region and bins

hem for better comparability. The markers for the SOH estimations indicate the mean
alue, while the bars correspond to the standard deviation. Similar, the mean OCV
econstruction error is evaluated with the bar plot. To increase comparability between
he EXP-NN and TL-NN, the results from the TL-NN are shifted to the left by 0.25%,
nd the results from the EXP-NN are shifted to the right by 0.25%.

or C∕3.85 and 1C. Also the EXP-NN seems to perform better for UC3,
ut only for lower voltage segments with 𝑉min ≤ 3.4V.

The advantages of TL become even more pronounced when com-
paring the accuracy along the degradation, as depicted in Fig. 10. The
TL-NN shows excellent performance in terms of SOH accuracy with
almost no recognizable error and barely any visible standard deviation.
For the whole test dataset, i.e., all C-rates and voltage windows, the
MAPESOH is 1.1% and the MAEOCV is 12mV. Also, the OCV reconstruc-
tion accuracy stays below 18mV for every SOH. Below 75% SOH, the
standard deviation gets visible with values below 1.6% which is further
recognizable by the higher OCV reconstruction error. A correlation
between the OCV reconstruction error and the SOH estimation accuracy
is thus probable.

Contrary, the EXP-NN underestimates the battery SOH along its
lifetime by approximately 5.2% and further inhibits a large standard
deviation of up to 2.9%. The MAEOCV is 24mV. The EXP-NN performs
worse for the upper SOH region with higher SOH standard deviations
and a larger OCV reconstruction error. Again, this supports the previ-
ously made assumption about an existing correlation between the OCV
reconstruction error and the SOH estimation accuracy. In total, the OCV
reconstruction accuracy deviates between 17mV to 47mV.

Fig. 11 presents the OCV reconstruction from partial voltage seg-
ents at C∕2 and 1C for different SOHs for the TL-NN at UC3. The

igure is divided into three columns with different SOHs and four rows
ith varying input voltage windows: The low SOC-range ((a)–(c)) spans

rom 3.25V to 3.8V, the mid SOC-range ((d)–(f)) from 3.6V to 4.1V,
he high SOC-range ((g)–(i)) from 3.8V to 4.2V and the full SOC-range
(j)–(l)) from 3.25V to 4.2V. Additionally, in every subplot, the MAEOCV
or both C-rates is given in its respective color and position. The TL-NN
erforms very well for the lower SOC-range for all three degradation
tates, as can be seen in Fig. 11(a)–(c). The error stays mostly below
2mV. Solely, the OCV reconstruction with 1C at the lowest SOH
Fig. 11(c)), shows a worse result with a MAEOCV of 22mV. With higher
OC-ranges, the accuracy worsens. While the TL-NN reaches acceptable
econstruction results for mid of life (MOL) (Fig. 11(e) and (h)) and
OL (Fig. 11(f) and (i)), the BOL reconstruction (Fig. 11(d) and (g))
rom the partial C∕2 shows high deviations with a MAEOCV of 37mV. A
ore detailed analysis reveals that the trajectory of the reconstructed
CV shows a good fit but is shifted to the left. On average, the upper
oltage segments in Fig. 11(g)–(i) lead to the worst results with OCV
 e

11 
econstruction errors between 9mV and 37mV. Again, for the BOL fit
rom the partial C∕2 voltage curve the trajectory itself looks promising
ut is shifted to the left. More interesting, the input data from the
artial segment at 1C lead to better results than the inputs from the
∕2 data. This stands in contrast with recent literature findings about
he applicability and limitations of mechanistic OCV reconstruction
pproaches [4,43–47]. The performance of the TL-NN heavily relies on
he training data from the target domain. As long as gradient changes
n the charging voltage curve are recognizable, the NN does not seem
o be influenced by the C-rate. Similar results where already gathered
rom evaluations of the base simulation model, where also no C-rate
ependency could be found. The full SOC-range (Fig. 11(j)–(l)) leads
o similar results as the low SOC-range (Fig. 11(a)–(c)). This is already
xpected due to the heatmaps investigated from Fig. A.15. All OCVs are
econstructed with sufficient accuracy.

.1.4. Use Case 4: Retraining from two cells at one C-rate - The limitations
f transfer learning

Within UC4 the limitations of TL get visible, as Fig. A.16 in Ap-
endix A.3 shows. As expected, the EXP-NN completely fails to estimate
he OCV with a MAEOCV up to 280mV for test data at 1C from the
oltage window between 3.6V to 4.1V due to insufficient training
ata. In comparison, the TL-NN performs well with an average OCV
econstruction error of 25mV. Fig. A.16(b) indicates that the estimated
CV curves are shifted to the left or right and hence lead to less
ccurate results. The OCV reconstruction error can only be evaluated at
harge positions where both curves – the measured and reconstructed
CV – are available. This explains the lower MAEOCV. The previously

een patterns in the accuracy depending on the voltage windows are not
isible for the EXP-NN. As can be seen in Fig. A.16 the model achieves
he best approximation with errors below 130mV for the upper voltage
egments. Of course, this must be interpreted in the context of the
lready very high errors and thus should not lead to any conclusions.
n contrast, the TL-NN still shows comparable OCV reconstruction
ependency as the previous UCs: The OCV is reconstructed with a
AEOCV below 20mV for the full and lower voltage segments, while

t worsens up to 26mV for the upper voltage segments.
This indicates that TL is indeed able to transfer knowledge from

he source domain to the target domain if, and only if, the fine-tuning
rocess includes the boundaries of the target domain. In our study,
hese boundaries are samples with C∕3.85 and 1C at BOL and EOL.
ence, TL works perfectly for UC3 but suddenly fails for UC4 once the

amples with 1C are excluded from the training data, as can be seen in
ig. 5.

While this gives clear requirements for TL, it stays an open research
uestions which features actually lead to accurate OCV reconstruction.
hus, we further elaborate on the hypothesis of gradient changes in the
oltage trajectories as the main feature.

.2. Transfer learning from different cell chemistries

To validate our hypothesis that gradient changes is the sole require-
ent for transferring knowledge from the source to the target domain

ndependent of its chemistry, we conduct additional experiments using
wo synthetic datasets. The synthetic datasets consist of constant cur-
ent voltage curves, and Fig. 12 displays samples of the OCPs used to
enerate them. The samples include an LFP cathode with a graphite
node (Fig. 12(a)) and an artificial anode with an artificial cathode
Fig. 12(b)). It is important to note that the ART cell used in this study is
ompletely self-designed and not the result of measurements. While the
ain trajectory is comparable to a conventional NMC- or NCA-graphite

ell, the only information contained is a changing gradient at three and
ive positions in the anode and cathode OCP, respectively. Hence, this is
he only transferable knowledge from the source domain and ultimately
roves if this is the main feature for TL in the field of battery SOH
stimation and OCV reconstruction.
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Fig. 11. Evaluation of the TL-NN performance for UC3 and test data drawn from partial charging events at C∕2 and 1C. For both cases, three degradation states and four different
voltage/SOC windows are evaluated. The low SOC-range ((a)–(c)) corresponds to a voltage window from 3.25V to 3.8V, the middle window ((d)–(f)) from 3.6V to 4.1V and the
high SOC-range ((g)–(i)) from 3.8V to 4.2V. Subfigures (j)–(l) show the results for the full input voltage. For all evaluated scenarios the mean absolute OCV reconstruction error is
included in the subplot, in its respective color. The upper text belongs to the 1C event, while the lower text corresponds to the C∕2 charge. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. Additional synthetic dataset generated from half-cell potential curves at various C-rates. Two additional datasets are created, one for a (a) LFP chemistry and another for
n (b) artificial (ART) chemistry.
s
b
n
s
a
w

In this study, we follow a consistent workflow, as depicted in
ig. 7, to investigate the effectiveness of plateau shifting in transfer-
ing knowledge between domains. The synthetic datasets used in our
xperiments are generated under identical conditions, including the
ame C-rates and aging paths. In contrast to our previous synthetic
ataset, we utilized the alawa-toolbox from Dubarry et al. [6] to
enerate these constant current voltage curves. To ensure consistency
nd comparability across the datasets, we apply the same preprocessing
teps, including voltage windowing, normalization, and data splitting.
hile the ART dataset uses the same defined voltage windows as
 r

12 
for the initial synthetic dataset in Table 2, the LFP cell undergoes a
windowing with lower voltage levels: The minimum voltage 𝑉min is
et to 2.8V, 3.0V, 3.2V and 3.4V. The maximum voltage 𝑉max varies
etween 3.4V, 3.5V and 3.6V. To optimize the performance of the
ew base models, we employ Bayes tuning with the defined search
pace, as outlined in Table 3. This allows us to improve the models and
chieve their respective optima. The final model architectures, along
ith their hyperparameters, are provided in the Appendix B to facilitate

eproducibility and transparency. The base models are now trained and
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Table 5
Performance comparison of the EXP-NN and the TL-NN (pretrained with a different
cell chemistry) for different UCs in the voltage window between 3.6V to 4.1V. The

Cs differ in the amount of training data for the fine-tuning process.
MAPESOH MAEOCV

C∕3.85 C∕2 1C C∕3.85 C∕2 1C

UC1
EXP-NN – 2.0% – – 21mV –
TL (LFP) – 9.1% – – 50mV –
TL (ART) – 3.3% - – 21mV -

UC2
EXP-NN 2.8% 4.9% 2.5% 18mV 18mV 15mV
TL (LFP) 17.8% 8.6% 4.2% 78mV 55mV 26mV
TL (ART) 1.2% 5.4% 1.6% 11mV 25mV 11mV

UC3
EXP-NN 7.2% 2.9% 3.3% 27mV 22mV 18mV
TL (LFP) 19.9% 15.3% 6.9% 74mV 64mV 40mV
TL (ART) 0.8% 4.7% 1.2% 12mV 28mV 11mV

UC4
EXP-NN 1.2% 6.7% 20.4% 15mV 140mV 280mV
TL (LFP) 15.5% 8.3% 9.0% 66mV 43mV 43mV
TL (ART) 0.5% 5.6% 6.9% 11mV 32mV 47mV

transfer-learned for the four defined UCs in Fig. 5. Specifically, we uti-
lize fine-tuning with a reduced learning rate of 1 × 10−4 for 200 epochs.
Noticeably, we must increase the learning rate in comparison to our
initial TL-NN from 1 × 10−6 to 1 × 10−4 (Adam default value is 1 × 10−3)
ue to the decreased similarity of the source and target datasets. In
he fine-tuning process, more adoptions of the network weights are
andatory to achieve sufficient learning of the target dataset which is
ot possible with a learning rate lower than 1 × 10−4. The base models
re compared to the EXP-NNs for each UC, and the final comparison
esults are summarized in Table 5. These results provide insights into
he performance and effectiveness of plateau shifting in transferring
nowledge across different UCs. The pretrained model from the LFP
ataset fails to transfer its past knowledge to the target domain. For
voltage input window from 3.6V to 4.1V and UC1 to UC3 the TL

FP model performs worse than the benchmark EXP-NN. The LFP OCV
urve is very flat and barely shows any detectable gradient changes
n its trajectory. At higher C-rates the voltage charging curve seems
ven faded and does not provide any information to the model. The
ole advantage is a moderate estimation for UC4. Nevertheless, the
ine-tuning process does not allow a sufficient adaption to the target
omain and hence the performance stays equally low for every UC.
ig. 13(a) illustrates the performance for the model on UC3 for the
omplete test dataset: The insufficient fine-tuning process is visible
y the almost constant estimations over lifetime. The learning-rate or
umber of epochs, however, cannot be increased any higher because
his will lead to catastrophic forgetting and completely erase the impact
f the learned knowledge from the source dataset.

Contrary the ART model outperforms the reference EXP-NN, as can
e seen in Fig. 13(b). The model achieves accurate estimations over
ifetime with a small standard deviation. The OCV curve is mostly
econstructed with a MAE below 20mV. The deviation, however, is

remarkably higher than the initial TL pretrained from a similar cell
chemistry (see Fig. 10). Table 5 provides further insights and reveals
the advantage of the ART TL-NN for all use cases and the voltage
window from 3.6V to 4.1V: While the model performs comparably
to the EXP-NN for test data with C∕2 and UC1 to UC3, it is very
ccurate for test data with C∕3.85 and 1C. This adds on to our theory

of including fixed boundaries of the target dataset to accelerate the
transfer of knowledge. Although the test data for these C-rates includes
different cells, inclusion of another cell at this specific C-rates for
training drastically improves performance. This may be due to the
better interpretation of C-rate dependent gradient changes and the
location of those in the voltage curve.

In conclusion, the ART TL-NN exhibits slightly lower performance
compared to the original TL-NN. This finding, however, emphasizes
that the specific chemical composition of the source dataset is not a
critical factor. Instead, it is the presence of gradients and its changes
13 
Fig. 13. Evaluation of the EXP-NN and the TL-NNs pretrained with (a) LFP and (b)
ART cell for UC3 and the whole test dataset. One data point corresponds to the average
estimation within a 2% region and bins them for better comparability. The markers
for the SOH estimations indicate the mean value, while the bars correspond to the
standard deviation. Similar, the mean OCV reconstruction error is evaluated with the
bar plot. To increase comparability between the EXP-NN and TL-NNs, the results from
the TL ART model are shifted to the left by 0.25%, and the results from the EXP-NN
are shifted to the right by 0.25%.

in the voltage curves that play a crucial role. Especially the cathode
OCP heavily influences the performance because in the LFP dataset,
the graphite anode shows some detectable gradient changes which are
not sufficient to reconstruct the OCV accordingly. Consequently, the
TCN-LSTM approach can effectively identify degradation modes and
their underlying patterns in the voltage curves, enabling the mapping
of these patterns to the altered OCV curve.

4.3. Comprehensive discussion

The study at hand presents a TCN-LSTM network to reconstruct the
full OCV curve from partial charging voltage segments at different C-
rates. Our findings further confirm the research question that TL from
synthetic data is possible and superior to traditional DL. For UC3 the
TL-NN outperforms the more complex EXP-NN which are both trained
/ fine-tuned with 13.2% of the total experimental dataset. For every
C-rate and a limited voltage window from 3.6V to 4.1V the TL-NN
already reaches OCV-reconstruction MAEs below 20mV which is in
the range of literature values [4,11,13]. The SOH is calculated from
the reconstructed OCV curves with MAPEs below 2.2%. We further
highlight the influence of C-rate and voltage-range on the accuracy.
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While lower voltage levels definitely lead to higher accuracies, the
influence of the C-rate is obscured by the impact of the training data.
Lower voltage segments may be beneficial because this allows an
easier detection of the anode aging due to changing gradient of the
voltage curve. Subsequent the identification of cathode aging is more
straightforward due to the higher gradient in the OCP. By introducing
two additional source synthetic datasets, we are able to answer the
second research question about the actual learned knowledge from
partial voltage curves: Our findings strongly suggest that the TCN-LSTM
model comprehends the degradation patterns in the voltage curve,
which are influenced by the shifting of plateaus caused by degradation
modes.

In contrast to our findings, Bockrath et al. [16] concluded the
middle and upper voltage-range to be more suitable for SOH esti-
mation from partial discharge voltage segments. They claim that the
middle and upper voltage ranges preserve more of the full capacity
degradation measurements and that their learned knowledge differs
from our hypothesis: Their TCN exploits the correlation between the
measured capacity from partial measurements to the measured SOH.
They show that their measured capacity throughput in the middle
and upper voltage ranges correlates well with the SOH. This is not
the main feature in our dataset, as we aim to reconstruct the full
OCV curve and calculate the SOH from this curve. Hence, the sole
information of the SOH is insufficient for accurate OCV reconstruction.
Comparing our TL-NN from UC3 with the TCN developed by Bockrath
et al. [16] for full voltage curves, we see that they have reached an
SOH RMSE of 1.0%, while we were able to decrease the SOH MAPE to
0.64%. Zhou et al. [26] have for the first time introduced a TL approach
for full OCV reconstruction from partial charging data. While they have
successfully applied TL to different cell chemistries and reconstructed
the OCV with errors below 2.73%, they failed to clarify the usability of
synthetic data for the source domain. They have used a generative DL
model and reached TL by fine-tuning the decoder basis. Contrary, we
fine-tune our complete TCN-LSTM network by reducing the learning
rate to 1 × 10−6 and epochs to a maximum of 200. Further, we have
ound no contributions towards a detailed analysis of the corresponding
nowledge transferred between deep-learning models.

We prove that synthetic data indeed works as a source domain
or TL, even for varying cells. Further, TL outperforms traditional DL
s long as the fine-tuning data includes the boundaries of the target
omain. TL increases its superiority against traditional DL with smaller
raining datasets. Generally, DL models for full OCV reconstruction
each higher accuracy for the lower voltage segments. The C-rate of
he input data does not influence the performance as much as the
raining/testing split does. Hence, in most research studies, the clear in-
luence of the C-rate is hard to identify. Pretraining from synthetic data
ources and varying cell chemistries works as long as enough plateaus
nd gradient shifts are detectable in the voltage curves. Although
retraining the model with the source LFP dataset fails to detect any
nformation, the use of an artificially designed dataset consisting of ART
CPs allows for the incorporation of knowledge regarding degradation
odes and OCV degradation into the NN. Consequently, by including
ore detectable plateaus and a wider range of gradients in the voltage

rajectory, the model is able to extract more information and exhibits
higher likelihood of successfully transferring its knowledge to a new

arget domain.
Table 4 shows that for UC2 and UC3 the performance is biased

owards test data with C∕3.85 and 1C. These data segments are included
n the fine-tuning data and hence the possibility of overfitting arises on
hese parts of the data. This stands in contrast to the reduced learning
ate and the smaller number of fine-tuning epochs. As Fig. 11 shows,
he reconstructed OCV matches the true OCV well, even for test data
ith C∕2 charging segments. Even though the MAEOCV for UC2 and
C3 are similar for the TL and the EXP-NN (see Table 4), the MAESOH

reveal a different result: The SOH estimation accuracy is higher for the

TL-NN and hence proves a better fit of the whole reconstruction because T

14 
the MAEOCV is only calculated at 𝑄-locations where both, the estimated
and the true OCV, exist. Hence, a MAEOCV = 0mV in combination with
MAESOH ≥ 10% is possible and thus the reconstructed curve may be
incomplete.

Future research should tackle the exploration of more and other
experimental datasets, including more C-rates, varying temperatures
and more challenging cell chemistries, i.e., LFP or Si-containing anodes.
The usage of synthetic data for TL arises the opportunity for DM
estimation due to the contained labels in the synthetic dataset. While
generating these labels in the experimental dataset is challenging,
differential voltage analysis (DVA) and ICA with OCV measurements
still can give rough insights about the degradation patterns. Similar,
the output of the developed TL-NN can be fed into a mechanistic model
approach [6] to reconstruct the full OCV curve based on shifting and
scaling of the pristine OCPs. This further enables to estimate the DMs
and includes more physico-chemical relevance into the estimation.

5. Conclusion

The study proposes a data-driven method to reconstruct the full
OCV curve from partial charging voltage segments at different C-rates.
We prove the effectiveness of TL from synthetic data and evaluate the
limitations of this shortcoming by comparing our TL models for four
different UCs to purely experimental ML models. In every UC the ex-
perimental training/fine-tuning data gets reduced from 67% for UC1 to
40% for UC2, to 13% for UC3 until only 6.6% of the data are included
for the fourth and last UC4. While the training/fine-tuning data for
UC1 to UC3 incorporate the boundaries of the dataset, i.e., highest and
lowest SOH and C-rate, data is limited to the lowest C-rate for UC4.
The TL-NN with a simpler architecture outperforms the EXP-NN for
every UC and reaches a MAEOCV below 22mV for the first three UCs
and a partial voltage input curve from 3.6V to 4.1V. We conclude that
a minimum voltage window spanning 400mV is necessary to enable
ccurate OCV reconstruction. Further, the lower voltage segments are
etter suited for full OCV curve reconstruction due to the better recog-
ition of features from the anode half-cell potential curve in the voltage
egment. These segments allow accurate SOH estimation with errors
elow 14mV MAEOCV and 1.1% MAPESOH, respectively, for the first
hree UCs and 𝑉min ≤ 3.4V. Reducing the training data amount to a
inimum, requires the inclusion of the boundaries, i.e., the highest and

owest C-rate and SOH, in the fine-tuning datasets. We further find the
nfluence of the C-rate to be negligible in our experiment but it may be
result of the train/test split. Pretraining from different source datasets
nd incorporating other cell chemistries allows for some interpretation
f the actual learning patterns in the black-box TCN-LSTM. Using a
ompletely artificial dataset with many plateaus and gradient switches
llows the model to comprehend the theory of DMs and apply this
relearned knowledge to the new target domain. Pretraining from the
FP dataset, however, fails due to no detectable gradient changes in the
oltage trajectory.

The positive results of the TL-NN suggest the general usage of TL
rom synthetic data for battery state estimation. Especially for SOC and
OH estimation over lifetime, the generation of comprehensive data
t various aging paths might accelerate the industrialization for BEV
leets and the low-cost development of data-driven state estimation
lgorithms by reducing measurement time and cost. The generation of
ynthetic data for various batteries is publicly available (see alawa-
oolbox [6]) and allows the pretraining of ML models for multiple
Cs. Even the deployment of ML models for new cell chemistries is

easible due to the low requirements of fine-tuning data from the target
omain. Hence, this research project takes a promising step towards
eneralizable ML models for almost every battery type.

The limitations of TL, however, must be kept in mind by fulfilling
he minimum requirements of the pretraining and fine-tuning datasets.

he application of ML models for OCV curve reconstruction from
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Fig. A.14. Results for UC2: (a), (b) EXP-NN, (c), (d) TL-NN. (a) Average SOH error for the test datast with the reference EXP-NN. (b) Average OCV error for the test datast with
the reference EXP-NN. (c) Average SOH error for the test datast with the TL-NN. (d) Average OCV error for the test datast with the TL-NN.
charging voltage segments is generally limited to batteries with suffi-
cient voltage trajectories, i.e., huge challenges arise for LFP cells. The
application of TL to other cell chemistries in the target domain remains
an open research question and must be explored in future studies.
Hence, the inclusion of larger and more diverse experimental datasets
in the target domain will answer many of the open questions. Moreover,
the application of the method to real-world BEV data must be answered
in the near future. Our proof-of-concept for TL-based SOH estimation
opens new research perspectives for SOC, SOH and DM estimation.
With the usage of synthetic data, many other state estimation models
can be developed faster and more efficiently.
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Mānoa for sharing the alawa battery emulation toolbox.

Appendix A. Detailed benchmark results

This section provides a more detailed analysis of each TL and
EXP-NN for UC2 to UC4. The Figures provide insights about the OCV
curve reconstruction and the SOH estimation accuracy with different
partial voltage windows as input data.

A.1. Use Case 2

See Fig. A.14.

A.2. Use Case 3

See Fig. A.15.

A.3. Use Case 4

See Fig. A.16.
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Fig. A.15. Results for UC3: (a), (b) EXP-NN, (c), (d) TL-NN. (a) Average SOH error for the test datast with the reference EXP-NN. (b) Average OCV error for the test datast with
the reference EXP-NN. (c) Average SOH error for the test datast with the TL-NN. (d) Average OCV error for the test datast with the TL-NN.
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Fig. A.16. Results for UC4: (a), (b) EXP-NN, (c), (d) TL-NN. (a) Average SOH error for the test datast with the reference EXP-NN. (b) Average OCV error for the test datast with
the reference EXP-NN. (c) Average SOH error for the test datast with the TL-NN. (d) Average OCV error for the test datast with the TL-NN.
Fig. B.17. Final architecture of the tuned synthetic models optimized with data from
the (a) LFP dataset and the (b) ART dataset and the corresponding dimensions of
output data from each layer with 𝑛 as the number of samples. In the TCN-layers the
first number refers to the kernel size and the second number to the filter size.
17 
Appendix B. Model architecture of the LFP and ART model

Fig. B.17 provides insights about the final model architectures
trained from the additional source datasets LFP and ART. The final
architectures are a result of an extensive Bayesian hyperparameter
optimization with 100 trials.
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