Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Probabilistic deconvolution of the distribution of relaxation times from multiple electrochemical impedance spectra

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008223
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8223-1

Titelangaben

Maradesa, Adeleke ; Py, Baptiste ; Ciucci, Francesco:
Probabilistic deconvolution of the distribution of relaxation times from multiple electrochemical impedance spectra.
In: Journal of Power Sources. Bd. 621 (2024) . - 235236.
ISSN 0378-7753
DOI der Verlagsversion: https://doi.org/10.1016/j.jpowsour.2024.235236

Volltext

[thumbnail of 1-s2.0-S0378775324011881-main.pdf]
Format: PDF
Name: 1-s2.0-S0378775324011881-main.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (9MB)

Abstract

Electrochemical impedance spectroscopy (EIS) is widely used to study the properties of electrochemical materials and systems. However, analyzing EIS data remains challenging. Among various analysis methods, the distribution of relaxation times (DRT) has emerged as a novel non-parametric approach capable of providing timescale information. Among the various DRT inversion methods, those based on Gaussian processes (GP) are particularly promising because they provide uncertainty estimates for both EIS and DRT. However, current GP-based DRT implementations can only handle one spectrum at a time. This work extends these models to allow concurrent analysis of multiple impedance spectra as a function of experimental conditions. The new method, called the quasi-Gaussian process distribution of relaxation times, treats the DRT as a GP with respect to the experimental state and as a finite approximation of a positively constrained GP with respect to timescales. This new DRT inversion approach is validated against noise-corrupted artificial EIS data and applied to experimental data, allowing us to expedite EIS data analysis of multiple EIS data from a probabilistic perspective.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Electrochemical impedance spectroscopy; Distribution of relaxation times; Gaussian processes; Quasi-GP model; Fuel cells; Batteries
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Elektrodendesign elektrochemischer Energiespeicher > Lehrstuhl Elektrodendesign elektrochemischer Energiespeicher - Univ.-Prof. Dr. Francesco Ciucci
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Elektrodendesign elektrochemischer Energiespeicher
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8223-1
Eingestellt am: 18 Feb 2025 09:12
Letzte Änderung: 18 Feb 2025 09:13
URI: https://epub.uni-bayreuth.de/id/eprint/8223

Downloads

Downloads pro Monat im letzten Jahr