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H I G H L I G H T S

• Enhances multi-spectra analysis using quasi-Gaussian process.
• Evaluates DRT inversion’s credibility.
• Accurately recovers DRT from noisy data.
• Provides a unified probabilistic approach for DRT analysis.
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A B S T R A C T

Electrochemical impedance spectroscopy (EIS) is widely used to study the properties of electrochemical materials 
and systems. However, analyzing EIS data remains challenging. Among various analysis methods, the distribu
tion of relaxation times (DRT) has emerged as a novel non-parametric approach capable of providing timescale 
information. Among the various DRT inversion methods, those based on Gaussian processes (GP) are particularly 
promising because they provide uncertainty estimates for both EIS and DRT. However, current GP-based DRT 
implementations can only handle one spectrum at a time. This work extends these models to allow concurrent 
analysis of multiple impedance spectra as a function of experimental conditions. The new method, called the 
quasi-Gaussian process distribution of relaxation times, treats the DRT as a GP with respect to the experimental 
state and as a finite approximation of a positively constrained GP with respect to timescales. This new DRT 
inversion approach is validated against noise-corrupted artificial EIS data and applied to experimental data, 
allowing us to expedite EIS data analysis of multiple EIS data from a probabilistic perspective.

1. Introduction

Electrochemical impedance spectroscopy (EIS) is a versatile char
acterization and diagnostic technique widely used in electrochemistry 
applications [1–4] to study batteries [5–8], fuel cells [7,9,10], solar cells 
[11,12], electrolyzers [13–15], and beyond [16–21]. The distribution of 
relaxation times (DRT) has recently emerged as a promising 
non-parametric approach to analyze impedance spectra [22,23] and has 
been applied to identify electrode processes [24,25], estimate battery 
state-of-health [26–29], and assess the performance of fuel cells [30,31]. 

Furthermore, the DRT has been used to develop equivalent circuit 
models without requiring prior circuit architecture information 
[32–35]. Assuming that the experimental impedance depends on both 
frequency, f , and an experimental state, ψ,1 the DRT impedance model, 
ZDRT(f ,ψ), can be expressed in terms of f and ψ as shown: 

ZDRT(f ,ψ)= i2πfL0(ψ) + R∞(ψ) +

∫+∞

− ∞

γ(log τ,ψ)

1 + 2πifτ d log τ (1) 

* Corresponding author. University of Bayreuth, Bavarian Center for Battery Technology (BayBatt), 95448, Bayreuth, Germany.
E-mail address: francesco.ciucci@uni-bayreuth.de (F. Ciucci). 

1 The experimental state, ψ, is encoded in a vector. For example, for a battery experiment, the vector state could comprise the state of charge (SoC) and cycle 
number (n), implying ψ = ( SoC n )⊤. While the theory in this article is developed with dependence on an experimental state vector, for the sake of clarity and 
without loss of generality, the DRT inversion from both synthetic and real experimental data is shown with respect to ψ, a scalar experimental state.

Contents lists available at ScienceDirect

Journal of Power Sources

journal homepage: www.elsevier.com/locate/jpowsour

https://doi.org/10.1016/j.jpowsour.2024.235236
Received 1 July 2024; Received in revised form 31 July 2024; Accepted 12 August 2024  

Journal of Power Sources 621 (2024) 235236 

Available online 26 August 2024 
0378-7753/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:francesco.ciucci@uni-bayreuth.de
www.sciencedirect.com/science/journal/03787753
https://www.elsevier.com/locate/jpowsour
https://doi.org/10.1016/j.jpowsour.2024.235236
https://doi.org/10.1016/j.jpowsour.2024.235236
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2024.235236&domain=pdf
http://creativecommons.org/licenses/by/4.0/


where L0(ψ), R∞(ψ), and γ(log τ,ψ) are the inductance, resistance, and 
the DRT, respectively. It should be noted that, to account for the 
dependence on the experimental state, we have encoded the L0(ψ), 
R∞(ψ), and γ(log τ,ψ) as functions parameterized on the experimental 
state (ψ). In particular, γ(log τ,ψ) is explicitly written as dependent on 
the log-timescale (log τ) with a parameterization on ψ. This is consistent 
with our previous articles [22,36–38], where the DRT problem does not 
change relative to its formulation [37,38], but rather, the parametriza
tion is shown explicitly.

Deconvolving γ(log τ,ψ) from EIS data is challenging, as it requires 
solving an ill-posed inverse problem [39,40]. Regularized regression 
[41–46], deep neural networks [37], and other methods [33,34,47–54] 
have been developed for this purpose. Our group introduced a proba
bilistic approach for DRT deconvolution, reformulating regularized 
regression in a Bayesian context [55], including the 
Gaussian-process-based DRT (GP-DRT) model [56]. However, the 
GP-DRT method can produce negative DRT values (if a non-negativity 
constraint is not imposed through some inducing points) and is 
limited to the imaginary part of the EIS spectrum. To address these 
challenges, we developed the finite GP-DRT (fGP-DRT) framework [36], 
which inherits the key properties of GP-DRT, utilizes both components 
of the impedance, and enforces a non-negativity constraint on the DRT. 
While promising, the current fGP-DRT’s limitation in deconvolving one 
EIS spectrum at a time restricts the analysis to a single experimental 
state without considering how several EIS spectra are correlated. This 
limitation could hinder the identification of electrochemical processes 
that evolve across conditions, such as oxygen partial pressure or tem
perature in fuel cells or cycle number, state of charge, or health in 
batteries.

This article addresses this limitation by extending the fGP model to 
explicitly incorporate dependence on the experimental state, ψ. Specif
ically, γ(log τ,ψ) is modeled as a GP with respect to ψ and a finite GP 
(fGP) with respect to log τ. Additionally, both L0(ψ) and R∞(ψ) are 
assumed to be GPs. This framework is termed quasi-GP DRT (qGP-DRT) 
as it combines a GP (with respect to ψ) with a fGP (with respect to log τ). 
This advancement allows for the simultaneous analysis of multiple EIS 
spectra (Fig. 1), providing a unified probabilistic DRT inversion frame
work across experimental conditions. To ensure its consistency, the qGP- 
DRT model was tested against noise-corrupted EIS synthetic experi
ments, showing that the deconvolved DRT closely matched analytical 
results. Furthermore, validation against real experimental data from fuel 
cells and batteries showed consistent DRT inversion against equivalent 
circuit models. Importantly, the qGP-DRT framework provides Bayesian 
probabilistic credible bands of impedance and DRT, allowing the 
assessment of the uncertainty with respect to both. In short, this work 
introduces a novel probabilistic approach for EIS data analysis based on 
Gaussian processes, paving the way for new research avenues in DRT 
analysis of multiple EIS spectra at a time.

2. Methods

As outlined in the Introduction, the qGP-DRT framework enhances 
the fGP-DRT model to handle multiple impedance spectra, allowing 
multidimensional experimental-dependent DRT inversion. This section 
covers its theoretical background, sampling process, and scoring used to 
check the consistency of the qGP-DRT model.

2.1. Theory

The qGP-DRT model assumes that γ(log τ,ψ) is a zero-mean GP with 
respect to the experimental state vector, ψ, and a fGP with respect to 
log τ [36].2 Additionally, the model approximates γ(log τ,ψ) as 

γ(log τ,ψ) ≈
∑N

n=1
γ(log τn,ψ) ϕn(log τ) (2) 

where ϕn(log τ) is a basis function [36], γ(log τn,ψ) is the DRT at the 
nodal points log τn and N is the number of collocation point with log τ =

(log τ1, log τ2,…, log τN)
⊤.

To illustrate the approach developed, we consider first only EIS data 
from a pair of spectra at two experimental states, ψp and ψq. We denote 
the corresponding data as Zp and Zq, which are the vectors concate
nating the real and imaginary components of pth and qth experiments, 
respectively [36]. The vectors of probed frequencies can be generically 

denoted as fp =
(

fp,1, fp,2,…, fp,Mp

)⊤
and fq =

(
fq,1, fq,2,…, fq,Mq

)⊤
, 

where Mp and Mq are not necessarily identical positive integers.
We consider the DRT discretization outlined by equation (2), such 

that the discretization vector for the pth experiment is xp =
(
L0
(
ψp
)
,R∞

(
ψp
)
, γ
(
log τ,ψp

)⊤)⊤. Then, we can rewrite (1) as [36] 

Zp =Apxp + εp (3a) 

Zq =Aqxq + εq (3b) 

where Ap and Aq are obtained by discretizing the real and imaginary 
parts of the DRT impedances using the real (Are,p) and imaginary (Aim,p), 
and the real (Are,q) and imaginary (Aim,q), component matrices, respec
tively, so that Ap is given by [36] 

Ap =

(
0 1 Are,p

2πfp 0 Aim,p

)

(4) 

and εp ∼ N
(
0, σ2

nIM
)

where σn is a scalar and IM is M × M identity ma
trix. For the qth experiment, definitions are analogous.

Assuming, the resistance, R∞(ψ), and inductance, L0(ψ), are zero- 
mean GPs, such that R∞(ψ) ∼ G P (0, kR(ψ,ψʹ)) and L0(ψ) ∼ G P (0,
kL(ψ,ψʹ)) with kernels kR(ψ,ψʹ) and kL(ψ,ψʹ), respectively.

It follows from (3) that 
(

xp
xq

)

∼ N (0,Γ) (5) 

where the covariance matrix, Γ, is defined as 

Γ =

(
Γpp Γpq

Γ⊤
pq Γqq

)

(6) 

and diagonal and off-diagonal blocks (Γpp and Γpq, respectively) are 

Γpp =

⎡

⎣
kR
(
ψp,ψp

)
0 0

0 kL
(
ψp,ψp

)
0

0 0 Kpp

⎤

⎦ (7a) 

Γpq =

⎡

⎣
kR
(
ψp,ψq

)
0 0

0 kL
(
ψp,ψq

)
0

0 0 Kpq

⎤

⎦ (7b) 

We can explicitly write the diagonal and off-diagonal blocks as 
(
Kpp
)

nm = kγ
( (

log τn,ψp
)
,
(
log τm,ψp

))
(8a) 

(
Kpq
)

nm = kγ
( (

log τn,ψp
)
,
(
log τm,ψq

))
(8b) 

where n,m = 1, 2,…,N. We can now generalize to the case of Nψ 

experimental conditions so that x =

⎛

⎜
⎜
⎜
⎜
⎝

x1

x2

⋮
xNψ

⎞

⎟
⎟
⎟
⎟
⎠

and Zexp =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Z1

Z2

⋮

ZNψ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

are 
2 We may write loosely that γ(ψ|log τ) ∼ G P (0, k(ψ,ψʹ)) with kernel 

k(ψ,ψʹ), where γ(ψ|log τ) indicates that log τ is fixed.
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the vectors of discretized DRTs and experimental impedances, respec
tively. Each vector xk and Zk (for k= 1, 2,…,Nψ ) can be defined in an 
identical way as above. As in the fGP model [36], the distribution of x 
conditioned to the experimental data Zexp is a truncated multivariate 
normal such that [36,56] 

x|Zexp ∼ T N (μ,Σ,0,∞) (9) 

where the mean, μ, and covariance matrix, Σ, are defined as 

μ = abs
(

ΓA⊤
(
AΓA⊤ + σ2

n INψ

)− 1Zexp

)
(10a) 

Σ = Γ − ΓA⊤
(
AΓA⊤ + σ2

n INψ

)− 1AΓ (10b) 

and abs( ⋅) indicates elementwise absolute value, INψ is the Nψ× Nψ 

identity matrix, A is a block-diagonal matrix such that A = diag(A1,A2,

…,ANψ ), and finally Γ is generalized relative to (6) as 

Γ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Γ11 Γ12 ⋯ Γ1Nψ

Γ⊤
12

⋮
Γ22

⋮
⋱

Γ2Nψ

⋮
Γ⊤

1Nψ
Γ⊤

2Nψ
ΓNψ Nψ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(11) 

where the definition of each block is analogous to the block definition 
given in (6).

2.1.1. Kernels
To compute the kernel blocks in (11) using (7) and (8), we employ 

the following kernels [36,56]: 

kγ((log τ,ψ), (log τʹ,ψʹ))= σ2
v exp

(

−
(log τ − log τʹ)2

2l 2
f

)(

−
‖ψ − ψʹ‖2

2

2l 2
ψ

)

(12a) 

kR(ψ,ψʹ)= σ2
R exp

(

−
‖ψ − ψʹ‖2

2

2l 2
R

)

(12b) 

kL(ψ,ψʹ)= σ2
L exp

(

−
‖ψ − ψʹ‖2

2

2l
2
L

)

(12c) 

where, σ2
v , σ2

R, σ2
L , are the kernel’s prefactors, l f , l R, l L, l ψ denote 

length scales, and ‖⋅‖2 is the Euclidean norm.

2.1.2. Hyperparameter optimization
Unless explicitly stated, the hyperparameter vector θ =

(
σn, σv, σR, σL, l f , l ψ , l R, l L

)⊤ was obtained by maximizing the un
bounded evidence, i.e., p

(
Zexp

⃒
⃒θ
)
, which is given by 

log
(
p
(
Zexp

⃒
⃒θ
))

=
1
2

Z⊤
exp
(
AΓA⊤ + σ2

nINψ

)− 1Zexp −
1
2

log
( ⃒
⃒AΓA⊤ + σ2

nINψ

⃒
⃒
)

−
(Mtot + 2)

2
log(2π)

(13) 

where Mtot =
∑Nexp

k=1Mkwith Mk being the number of frequencies probed 
during the kth experiment.

As calculating the direct inverse and determinant of the large matrix 
in (13) can be numerically challenging, AΓA⊤ was approximated using a 
truncated singular value decomposition, such that AΓA⊤ ≈ UrSrV⊤

r , 
where matrices Ur and Vr contain the first r columns and rows of the 
orthogonal matrices U and V, respectively, and Sr = diag(σ1, σ2,…, σr)

contains the r largest singular values of AΓA⊤ with σ1 > σ2 > …, σr 

(panel (a) of Fig. S1). Then, 
(
AΓA⊤ + σ2

nI
)− 1 was approximated using the 

Sherman-Morrison-Woodbury’s formula [57] as 

(
AΓA⊤ + σ2

nI
)− 1

≈
1
σ2

n
I −

1
σ4

n
Ur

(

diag
(

σ1σ2
n

σ1 + σ2
n
,

σ2σ2
n

σ2 + σ2
n
,…,

σrσ2
n

σr + σ2
n

))

V⊤
r

(14) 

and the determinant 
⃒
⃒AΓA⊤ +σ2

nI
⃒
⃒ was approximated using the matrix 

inversion lemma [58] as 

⃒
⃒AΓA⊤ + σ2

nI
⃒
⃒ ≈

∏n

k=1

(
σ2

n + σk
)

(15) 

Fig. 1. Schematic illustration of the qGP-DRT framework.
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2.1.3. Sampling
Relative to the previously used Hamiltonian Monte Carlo sampler 

[36], we added an adaptive step size [59] to sample x from (9). The 
adaptive step size optimizes exploration in Hamiltonian dynamics by 
monitoring acceptance rates: small steps slow sampling, and large steps 
introduce inaccuracy. The algorithm adjusts step size to balance effi
ciency (high acceptance) and exploration (finding diverse states). The 
step size dynamically adjusts based on the acceptance rate over 50-sam
ple intervals. Rates below 90 % trigger a step-size decrease for more 
careful exploration, while rates above 90 % lead to an increase of the 
step size for faster exploration. This ensures efficient sampling within 
the desired constraints.

During sampling, 10,000 samples were generated with the initial 
1000 samples being discarded as burn-in. Next, having generated 9000 
samples of x, the corresponding impedances, Z, were obtained as Z =

Ax. The 1st to 99th percentile credible intervals around the means were 
visualized as gray regions in corresponding plots.

2.2. Scoring the quality of the DRT and EIS recovery

To evaluate the quality of DRT and impedance recoveries, the 
following normalized mean square errors were used: 

MSEnorm,γ =
1

Nψ

∑Nψ

k=1
E

(⃦
⃦ γexact,k − γk

⃦
⃦2

⃦
⃦γexact,k

⃦
⃦2

)

(16a) 

MSEnorm,Z =
1

Nψ

∑Nψ

k=1
E

(⃦⃦ Zexact,k − Zk
⃦
⃦2

⃦
⃦Zexact,k

⃦
⃦2

)

(16b) 

where E[.] denotes expected value computed from the samples obtained 
as described in the previous section, γexact,k, is the exact DRT vector 
corresponding to exact impedance vector Zexact,k, γk and Zexact,k are the 
correspondingly recovered DRT and impedance vectors, respectively. As 
above, γ is discretized with respect to log τ.

2.3. Artificial experiment generation

The noise-corrupted artificial data were generated in the 10− 2 − 106 

Hz frequency range with 10 points per decade by adding noise to the 
exact impedance Zexact. Unless explicitly stated, the error standard de
viation was set to σexp

n = 0.5 Ω .3

3. Results

Synthetic experiments were first used to validate the consistency and 
robustness of the qGP-DRT model. Then, the model was tested against 
real data from a fuel cell and battery under diverse experimental 
conditions.

3.1. Artificial experiments

We first considered EIS data originating from single ZARC, Havriliak- 
Negami, 2 × ZARC, Gerischer, and piecewise constant models [36,56,
60] (their analytical expressions are reported elsewhere [41]). Without 
loss of generality, the experimental state is taken to be ψ , a scalar.

3.1.1. Single ZARC and Havriliak-Negami models
We initially investigated a single ZARC model consisting of an ohmic 

resistor (R∞) in series with a parallel circuit containing a resistor (Rct) 
and a constant phase element (CPE) [37]. Six synthetic experiments 

were generated with Rct (ψ) exhibiting a dependence on ψ . Fig. 2 depicts 
the median DRTs and impedances ((panels (a) and (c)) recovered with 
the qGP-DRT model for ψ = 0.0, 0.2, .., 1.0). All DRTs and impedances 
(panels (a), (c) & (e)) were recovered accurately, as evidenced by the 
low MSEnorm,γ = 1.73 × 10− 2 and MSEnorm,z = 9.89 × 10− 6 values 
(Table S7). DRT peaks were consistently identified for all experimental 
conditions, with a noticeable peak decrease as ψ increased (Fig. 2 (e)). 
The recovered qGP-DRT impedances closely matched the corresponding 
exact impedances (panel (a) of Fig. 2). To evaluate the computational 
scaling of the qGP-DRT framework, we generated 5 synthetic experi
ments with each Nψ = 10, 20, 30, and 40, and recorded the computa
tional time.4 We noted the scalability of the qGP-DRT model, given that 
20 experiments took approximately 17 min (Figure S1 (b)).

We then investigated a scenario where τ0 (ψ) exhibited a dependence 
on ψ . Eleven EIS spectra were subsequently generated for ψ = 0.0,0.2,
…1.0. Panels (a), (b), and (c) of Fig. 3 show the magnitudes, qGP DRTs, 
and 2D qGP-DRT plots, respectively. Notably, the recovered qGP DRTs 
demonstrated characteristic response shifts as ψ varied (panels (c) and 
(d) of Fig. 3). Furthermore, we applied the qGP-DRT model to analyze 
multiple EIS spectra derived from the Havriliak-Negami model. As for 
the single ZARC case, the DRTs and impedances were well recovered 
(see panels (b), (d), and (f) of Fig. 2).

3.1.1.1. Influence of the experimental noise. We evaluated the influence 
of experimental noise on the qGP-DRT framework. We employed a 
single ZARC model and generated synthetic experiments for various 
noise levels (σexp

n = 1, 1.5, and 2.0 Ω) and ψ = 0.0,0.2, ..,1.0). As above, 
we obtained hyperparameters optimally by maximizing the evidence at 
each noise level. The recovered qGP-DRTs and EIS are presented in 
Figs. S2 and S3. Even at elevated noise levels (1.5Ω and 2.0 Ω), the 
recovered DRTs and impedances closely matched their corresponding 
exact values (see Fig. S3).

Additionally, we considered frequency-dependent noise models 
defined elsewhere [41], with the artificial EIS data being generated at 
noise level σexp

n = 0.02Ω. Consistent with previous findings, the qGP 
DRTs and impedances closely matched the corresponding exact and 
experimental impedances (Fig. S4), as confirmed by the low values of 
MSEnorm,γ and MSEnorm,Z for all σexp

n listed in Table S7.

3.1.2. Multiple ZARCs
We first studied the 2 × ZARC model, which consists of two ZARCs 

(Section 2.1.1) in series. These circuits were chosen to exhibit over
lapping, separated, or distant timescales (see the circuit parameters in 
Tables S2 and S3). Six synthetic EIS spectra were generated with Rct,2(ψ)
and τ2 (ψ) exhibiting a dependence on ψ .

For the case of the separated 2 × ZARC (τ1 = 1.0× 10− 1s,τ2 = 1.0×

10− 3 s), the Nyquist plots and the qGP DRTs are presented in panels (a) 
and (c) of Fig. S5, respectively. Consistent with our observations for the 
single ZARC model (Section 2.1.1), the qGP-DRT model successfully 
identified the DRT peaks and recovered the impedances across all 
experimental conditions. As shown in panels (c) and (e) of Fig. S5, the 
qGP DRTs exhibited two distinct peaks: one prominent for all ψ , and a 
second peak that diminishes with changing ψ. The overlapping 2 ×
ZARC model (with τ1 = 1.0× 10− 1s, τ2 = 1.0× 10− 2s) was also well 
recovered, as demonstrated in panels (b) and (d) of Fig. S5.

These findings were further confirmed for the distant 2 × ZARC and 3 
× ZARC models with the estimated median DRTs and impedances 
closely matching their corresponding exact values (see Figs. 4 and 5). 
Additionally, the low MSEnorm,γ and MSEnorm,z values in Table S7
corroborated the quality of the DRT and impedance recovery by the 
qGP-DRT model.

3 σexp
n is the standard deviation of the noise in the artificial experiments 

analogous to ε ∼ N
(
0, σexp

n I
)

in equation (3). Instead, σn is one of the hyper
parameters of the qGP-DRT model originating from equation (3).

4 The clock time was measured using an Intel(R) Core (TM) i5-10300H CPU 
with a 2.50 GHz clock rate in a laptop computer equipped with 16 GB of RAM.
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3.1.3. Discontinuous DRT
We extended the analysis to two discontinuous models, namely the 

Gerischer and piecewise constant models, whose circuit’s parameters 
values are provided in Table S4. The corresponding recovered qGP DRTs 
and impedances are presented in Fig. S6. We observed that the qGP-DRT 
model approximately captured discontinuities.

3.2. Real experiments

Having established that the qGP-DRT model is consistent against 
well-controlled, analytical models, we evaluated its effectiveness in 
handling real-world data leveraging EIS spectra from a fuel cell and 
battery.

Fig. 2. Nyquist plots of the single ZARC (a) and Havriliak-Negami models (b) with Rct (ψ) exhibiting a dependence on ψ (σexp
n = 0.5Ω). Panels (c) and (d) show the 

corresponding recovered qGP DRTs, with associated 2D contour plots of median DRTs in panels (e) and (f).
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3.2.1. Symmetric protonic ceramic fuel cell
We analyzed data from a symmetric cell featuring Ba0.95La0.05FeO3-δ 

(BLF) as the electrode materials and a samarium-doped ceria as the 
electrolyte. The cell was operated at 550 ◦C in an N2/O2 atmosphere 
under varying oxygen partial pressures (pO2 = 21, 40, 60, 80, and 100 
%). EIS data were collected across the frequency range 100 mHz to 20 
kHz with five points recorded per decade. The data were regressed using 
2 × ZARC ECM, with the parameters provided in Table S5. The qGP-DRT 
model successfully identified the DRT peaks for all experimental con
ditions, as shown in Fig. 6 (panels (c) and (e)). Additionally, the qGP- 
DRT model matched with the DRTtools,5 the fitted ECM and the 
experimental data (panel (a) and (c) Fig. 6), as evidenced by the low 
MSEnorm,γ and MSEnorm,Z values in Table S8.

3.2.2. Lithium-metal battery
Next, we investigated a lithium-ion battery with a LiFePO4 (LFP) 

cathode, a lithium-metal anode, and 1M LiPF6 in ethylene carbonate: 
diethyl carbonate (1:1 v/v) as an electrolyte [62]. EIS measurements 

were collected at frequencies ranging from 0.1 Hz to 7 MHz with a 5C 
charge-discharge rate at cycles 30, 60, 90, and 120. The data were 
regressed using a 2 × ZARC ECM, with the parameters provided in 
Table S6.

The qGP-DRT model successfully recovered the DRTs and imped
ances, the corresponding DRTs were in good agreement with DRTtools 
and ECM results (Fig. 6, panels (b) and (d)). Well-defined peaks were 
consistently identified τ = 10− 4 s for all experimental conditions (Fig. 6 
(f)). Furthermore, the low MSEnorm,γ and MSEnorm,Z values in Table S8
confirmed the effectiveness of the qGP-DRT regression. Additionally, the 
narrow credible bands in Fig. 6 (d) indicated low uncertainty and high 
confidence in the recovered DRTs.

4. Remarks and future directions

The qGP-DRT framework developed in this work enables simulta
neous probabilistic analysis of multiple EIS spectra. We validated its 
effectiveness and consistency against both artificial and real datasets, 
with model hyperparameters optimally selected through evidence 
maximization. Despite its promise, several avenues for future improve
ments can be identified.

To enhance computational efficiency in EIS data analysis, we 
employed singular value decomposition for low-rank matrix approxi
mation and adaptive step-size HMC sampling. However, challenges 

Fig. 3. (a) Magnitudes for the single ZARC model with τ0(ψ) exhibiting dependence on ψ
(
σexp

n = 0.5Ω). Panel (b) shows corresponding qGP DRTs, while panels (c) 
and (d) display 2D contour plots of the median and standard deviation, respectively.

5 For the pyDRTtools settings, Gaussian radial basis functions for the dis
cretization, and the full impedance spectrum were used. A regularization 
second-order derivative matrix was employed, and the regularization param
eter was computed using the generalized cross-validation [41,61].
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remain in handling large-scale datasets efficiently. Future research 
should explore alternative low-rank approximation techniques beyond 
SVD to further optimize computational speed and accuracy [63]. 
Additionally, investigating advanced sampling approaches that enable 
direct sampling from high-dimensional spaces could potentially accel
erate the analysis process [59]. Finally, the integration of scalable GP 

approximations such as sparse GPs and distributed GPs, could improve 
scalability and performance for large-scale or distributed EIS data 
analysis [36]. These advancements could collectively lead to faster 
analysis time, greater accuracy, and the ability to handle larger EIS 
datasets more effectively.

In our current work, we employed evidence maximization for 

Fig. 4. Nyquist plots of the distant 2 × ZARC model for two conditions: (a) Rct,1< Rct,2 and (b) Rct,1> Rct,2. In both conditions, Rct,2 (ψ) and τ2(ψ) exhibit a 
dependence on ψ (σexp

n = 0.5Ω, τ1 = 1.0 × 10− 1 s , and τ2 = 1.0 × 10− 3 s). Panels (c) and (d) depict the corresponding recovered qGP DRTs, along with their 
associated 2D contour plots of median DRTs in panels (e) and (f).
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hyperparameter selection [36,64]. However, exploring alternative ap
proaches, such as using products of GP experts as surrogate models, 
could potentially address scalability challenges, though with a possible 
trade-off in predictive accuracy [65]. This remains a significant avenue 
for future research.

A key challenge in our current framework is accurately capturing 
discontinuities in the DRT, which are essential for representing elements 
like fractal, Gerischer, and piecewise constant impedance. The inher
ently smooth nature of GPs poses limitations in this regard. Future 
research should investigate integrating hierarchical GP methods, such as 
the deep GPs [66] or other Bayesian methods [55] to enhance the re
covery of DRT discontinuities, thereby improving the framework’s 
ability to model complex impedance behaviors and expanding its 
applicability in EIS data analysis.

5. Conclusions

This work introduces a novel qGP-DRT framework, enabling simul
taneous deconvolution of the DRT from EIS data acquired under various 
experimental conditions. Inheriting key features from the previously 
developed fGP-DRT model, this approach maintains a probabilistic GP 
foundation, robustness to experimental noise, and, unlike the vanilla 

GP-DRT, full utilization of complete impedance spectra and non- 
negativity of the recovered DRTs. Notably, the qGP-DRT model sim
plifies to the fGP-DRT model when considering a single experimental 
condition. Unlike the fGP-DRT model, the qGP-DRT model can invert the 
DRT across multiple experimental conditions, effectively bridging de
pendencies on both frequencies and experimental states. Validation on 
synthetic and real EIS datasets confirms the consistency and effective
ness of the approach. In short, this article introduces a novel method
ology for the probabilistic analysis of multiple EIS spectra, paving the 
way for further research using GP-based methods for DRT 
deconvolution.

Code availability

Relevant code is available at https://github.com/ciuccislab/qua 
siGP.
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List of Symbols

Greek letters

Γ Covariance matrix for all sets of experiments
Γpq Covariance matrix for pth and qth experiments
γ DRT vector
γ(logτ,ψ) Distribution of relaxation times
γexact Analytical DRT vector
ε Vector of experimental errors
θ Vector of hyperparameters
μ Mean vector for the overall experiments
Σ Covariance matrix for the overall experiments
σL Prefactor for the kernel kR(ψ,ψʹ)
σn GP hyperparameter
σexp

n Experimental error
σR Prefactor for the kernel kL(ψ,ψʹ)
σr Retained singular value
σv Prefactor for the kernel kγ((log τ,ψ), (log τ́ ,ψʹ))
τ Relaxation time
ϕn(log τ) Basis function
ψ Vector of experimental conditions

Latin letters

A Discretization matrix for the overall experiments
Ap Discretization matrix for pth experiment
f Frequency vector
K Covariance matrix
k GP kernel
L0 Inductance
l f and l ψ Length scales for the kernel kγ((log τ,ψ), (log τ́ ,ψʹ))
l L Length scale for kL(ψ,ψʹ)
l R Length scale for kR(ψ,ψʹ)
M Number of frequencies
Mtot Number of frequencies for all experiments
MSEnorm,γ Normalized DRT mean square error
MSEnorm,Z Normalized impedance mean square error
N Number of collocation points
Nψ Number of experimental conditions
Rct Charge-transfer resistance
R∞ Ohmic resistance
Sr The diagonal matrix containing all the singular values
Ur and Vr The matrices containing the first r columns and rows of the orthogonal matrices U and V
x Vector of discretized DRTs for the overall experiment
xp and xq Vector of discretized DRTs for p and q experiments
Z Vector of the recovered impedance
Zexact Vector of analytical impedance
Zexp Vector of experimental impedance
Zp and Zq Vector of experimental impedance for p and q experiments
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List of Abbreviations

BLF Ba0.95La0.05FeO3-δ
fGP finite Gaussian processes
DRT Distribution of relaxation times
ECM Equivalent circuit model
EIS Electrochemical impedance spectroscopy
GPs Gaussian processes
LFP LiFePO4
pO2 Oxygen partial pressure
SoC State of charge
SVD Singular value decomposition
qGPs quasi-GPs
std Standard deviation
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