URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8169-4
Titelangaben
Kurz, Sascha ; Samaniego, Dani:
Simple games with minimum.
Bayreuth
,
2025
. - 16 S.
Volltext
![]() |
|
||||||||
Download (280kB)
|
Abstract
Every simple game is a monotone Boolean function. For the other direction we just have to exclude the two constant functions. The enumeration of monotone Boolean functions with distinguishable variables is also known as the Dedekind's problem. The corresponding number for nine variables was determined just recently by two disjoint research groups. Considering permutations of the variables as symmetries we can also speak about non-equivalent monotone Boolean functions (or simple games). Here we consider simple games with minimum, i.e., simple games with a unique minimal winning vector. A closed formula for the number of such games is found as well as its dimension in terms of the number of players and equivalence classes of players.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | simple games; enumeration |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Fakultäten |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-8169-4 |
Eingestellt am: | 05 Feb 2025 11:03 |
Letzte Änderung: | 05 Feb 2025 11:03 |
URI: | https://epub.uni-bayreuth.de/id/eprint/8169 |