Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Machine learning investigation of polylactic acid bead foam extrusion

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00007965
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7965-2

Titelangaben

Shah, Karim Ali ; Brütting, Christian ; Albuquerque, Rodrigo Q. ; Ruckdäschel, Holger:
Machine learning investigation of polylactic acid bead foam extrusion.
In: Journal of Applied Polymer Science. Bd. 141 (2024) Heft 30 . - e55693.
ISSN 1097-4628
DOI der Verlagsversion: https://doi.org/10.1002/app.55693

Volltext

[thumbnail of J of Applied Polymer Sci - 2024 - Shah - Machine learning investigation of polylactic acid bead foam extrusion.pdf]
Format: PDF
Name: J of Applied Polymer Sci - 2024 - Shah - Machine learning investigation of polylactic acid bead foam extrusion.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (1MB)

Abstract

Abstract This study employs machine learning algorithms to analyze the bead foam extrusion process and to assess the impact of processing parameters, specifically focusing on their effects on bead foam density and melt pressure in under water granulation (UWG) for polylactic acid (PLA). These interrelated parameters, influenced by processing parameters such as temperature, screw speed, and blowing agent, possess challenges for traditional empirical methods to capture. The key factors that significantly impact the prediction of melt pressure in UWG are blowing agent, injector pressure, temperature in B-extruder and die size. Likewise, essential parameters for predicting bead foam density comprise blowing agent, injector pressure, temperature in B-extruder, die plate temperature, melt temperature in B-extruder, and melt pressure in B-extruder. Machine learning (ML) models were employed to forecast bead foam density and melt pressure in UWG using various processing parameters in PLA bead foam extrusion. The random forest model achieved a high coefficient of determination R2 score of 0.96 for predicting melt pressure in UWG. Additionally, the decision tree model demonstrated effective predictions for bead density, with the R2 score: 0.81. These ML models can be applied to diverse materials, leading to more sustainable, efficient processes for bead foam extrusion.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: bead foams; foam extrusion; machine learning; PLA; twin-screw extruder
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe > Lehrstuhl Polymere Werkstoffe - Univ.-Prof. Dr.-Ing. Holger Ruckdäschel
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Polymere Werkstoffe
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-7965-2
Eingestellt am: 07 Okt 2024 06:10
Letzte Änderung: 07 Okt 2024 06:11
URI: https://epub.uni-bayreuth.de/id/eprint/7965

Downloads

Downloads pro Monat im letzten Jahr