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Abstract

This study employs machine learning algorithms to analyze the bead foam

extrusion process and to assess the impact of processing parameters, specifi-

cally focusing on their effects on bead foam density and melt pressure in under

water granulation (UWG) for polylactic acid (PLA). These interrelated parame-

ters, influenced by processing parameters such as temperature, screw speed,

and blowing agent, possess challenges for traditional empirical methods to

capture. The key factors that significantly impact the prediction of melt pres-

sure in UWG are blowing agent, injector pressure, temperature in B-extruder

and die size. Likewise, essential parameters for predicting bead foam density

comprise blowing agent, injector pressure, temperature in B-extruder, die plate

temperature, melt temperature in B-extruder, and melt pressure in B-extruder.

Machine learning (ML) models were employed to forecast bead foam density

and melt pressure in UWG using various processing parameters in PLA bead

foam extrusion. The random forest model achieved a high coefficient of deter-

mination R2 score of 0.96 for predicting melt pressure in UWG. Additionally,

the decision tree model demonstrated effective predictions for bead density,

with the R2 score: 0.81. These ML models can be applied to diverse materials,

leading to more sustainable, efficient processes for bead foam extrusion.
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1 | INTRODUCTION

Polymer foams are widely used in today's materials
industry due to many application in the modern material
world, due to their enhanced mechanical properties, their
ability to absorb energy, lightweight nature, and out-
standing insulating and cushioning properties.1 Bead
foaming has evolved into a well-established

manufacturing pathway for the production of foams. This
innovative technology facilitates not only the substantial
expansion of foams through extrusion foaming but also
accommodates the intricate geometrical complexities
inherent in the resulting parts. New polymeric materials
are vital in the search for sustainable solutions, as they
hold the key to addressing a lot of challenges across
diverse industries. The desirable features of polymeric
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materials grow complex in the quest for improved perfor-
mance and environmental friendliness. These materials
should exhibit a harmonious blend of mechanical
strength, flexibility, and durability, catering to the spe-
cific needs of various applications. Moreover, incorporat-
ing recyclability and biodegradability is essential to
minimize the environmental footprint of these materials.
The development of new polymeric materials with the
desired properties requires interdisciplinary collabora-
tion, drawing insights from chemistry, materials science,
engineering, and environmental science.2,3

Polymeric materials, with properties tailored to meet
specific needs, are crucial for sustainable solutions across
industries. Among these materials, polylactide acid (PLA)
stands out as a promising condidate.2,3 PLA is a thermo-
plastic polymer that is biodegradable and biobased which
is derived from renewable resources like corn starch or
sugarcane.4 PLA's desirable properties contribute signifi-
cantly to its role in sustainable material solutions. Its bio-
degradability ensures a reduced environmental impact,
making it an attractive alternative to traditional
petroleum-based plastics. PLA also exhibits good
mechanical properties, allowing it to be used in various
applications that require both strength and flexibility.5

Machine learning (ML) is very promising branch of
artificial intelligence (AI). ML encompasses diverse defi-
nitions that have evolved over recent decades. Simply, it
refers to a category of AI that enhances software or sys-
tem processes through continuous learning from experi-
ence, without the need for explicit programming.
According to Alpaydin,6 ML involves programming com-
puters to optimize performance criteria based on sample
data or past experiences. Technically, ML techniques are
classified based on the types of learning processes they
undertake. ML was initially categorized into two types:
supervised and unsupervised learning. However, upon
closer examination, it can be further subdivided into four
distinct types: supervised learning, unsupervised learn-
ing, semi-supervised learning, and reinforcement
learning.7

Furthermore, each of these types involves various
algorithms tailored to address specific problems based on
the task's nature, problem type, and statistical data.

ML is gaining significant importance in modern
research within the field of material science.8–12 In recent
decades, there has been a significant increase in the prac-
tical applications of ML, which has been followed by sev-
eral significant advancements in the underlying
algorithms and technique. Its application extends far
beyond traditional approaches, providing innovative
solutions and insights that were previously challenging to
attain. Recent study on the utilization of ML in the mate-
rial design, identification, modeling, analysis, and

characterization of polymers was published.13 In polymer
science, the integration of ML models has proven to be a
formidable asset, particularly in the analysis and optimi-
zation of various polymer processes,14,15 including the
intricate domain of polymer bead foaming.16,17

Researchers have increasingly turned to ML algorithms
to gain deeper insights into the complexities of these pro-
cesses, and the exploration of such methodologies is par-
ticularly pronounced in the context of PLA. In the study
by Albuquerque et al.,18 the investigation of low-density
PLA batch foams in the autoclave through machine
learning was thoroughly explored, and achieved the
mean absolute error of 30 kg m�3 and a coefficient of
determination R2ð Þ of 0.94. Another ML model using ran-
dom forest (RF) and principal component analysis (PCA)
for the prediction of the mechanical properties of
extruded PLA using an instrumental slit die, has been
studied by Mulrennan et al.19

However, the ML offers high potential but no litera-
ture on PLA bead foam is available to our knowledge.
The absence of ML studies in the literature for PLA bead
foam extrusion underscores the aim of the present
research initiative. The main goal of this study is to fill a
crucial gap by employing ML techniques to uncover
novel insights into the processes involved in PLA bead
foam extrusion and to investigate and predict the influ-
ence of various processing parameters on the properties
of PLA bead foams during the extrusion process.

2 | MATERIALS AND METHODS

2.1 | Materials

In this study, PLA, specifically Ingeo 2003D
(NatureWorks Ltd., Minnetonka, MN), was utilized. This
is a high-molecular-weight extrusion-grade material with
a D-content approximately equal to 4.3% and a melting
point of 150�C.4

2.2 | Bead foam extrusion

Extrusion is a common process in the manufacturing of
bead foams. This involves carefully controlled extrusion
foaming of polymers, like PLA in this study. In foam
extrusion, the material is melted in the first A-extruder,
which is a twin-screw extruder (L/D = 42 with a screw
diameter of 25 mm), and CO2 is injected as a blowing
agent into the molten material. In this section the tem-
perature was keep constant through all trials at 200�C
The twin-screw then homogenizes the melt and CO2 to
insure uniform foaming. Subsequently, the molten
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material proceeds to the B-extruder, a single-screw
extruder (L/D= 30 with a screw diameter of 45mm),
where the melt is cooled down. This decrease in tempera-
ture leads to an increase in pressure in the B-extruder.
The material then moves to the underwater granulation
(UWG) through the die, where a high-pressure drop
occurs, leading to expansion or foaming. In the UWG,
the foam strand is cut into beads by a knife under a
defined water pressure. Temperature, screw speed, CO2

content, and other processing parameters affect the bead
foam density and melt pressure in UWG in our case. A
schematic diagram of the bead foam extrusion is shown
in Figure 1. The processing parameters were obtained by
the machine setup and the density was measured based
on the Archimedes principle, consistent with other
publications.20

2.3 | ML models

In this study, we extensively utilized a diverse set of
supervised machine learning algorithms designed specifi-
cally for regression tasks. Regression models explain the
association between a set of predictor variables xð Þ and

one or more responses ŷð Þ. Typically, these models or
equations take on a linear form.

E ŷð Þ¼ β0þβ1x1þβ2x2þ…þβpxp ð1Þ

where β are coefficients to be determined from data.
The selection of these models is grounded in their

effectiveness in learning from labeled datasets to provide
accurate predictions for variables such as the melt pres-
sure in UWG and bead foam density. Notable algorithms
include decision tree regressor (DT), random forest
regressor (RF), lasso regressor (LASSO), gradient boost-
ing regressor (GB), and support vector regressor (SVR)
with linear regression (LR) as reference model. All
models were implemented using Python libraries
(e.g., NumPy, scikit-learn)a,b,c within the Jupyter note-
book environment. The code was written in Python
3 using Jupyter Notebook.

We screened a number of machine learning regres-
sion models before selecting the best one to use as the
most appropriate model. The performance of the regres-
sion models does not only depend on the quality and
quantity of data but are highly influenced by the ML
algorithm we are using for the data.21 In this study, we

FIGURE 1 Schematic

description of bead foam

extrusion mechanism,

highlighting the key processes

involved (Table 1). [Color figure

can be viewed at

wileyonlinelibrary.com]
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used data from 71 bead foam extrusion trails. The data
are used to train four different machine learning models
to predict two target properties: melt pressure in UWG
and bead foam density. An 80:20 split of the total dataset
was made into training and test sets, respectively. We
next assessed the models' performance metrics in predict-
ing unknown data using the 20% set aside for the test set.
This evaluation allows us to evaluate while contrasting
the effectiveness of each model in making predictions on
new, unseen data. We also used a 5-fold cross validation
technique to ascertain the optimal hyperparameters for
all models. A brief description of each regression model
is provided below.

2.3.1 | Decision tree regressor

For regression problems, the DT Regressor is a versatile
algorithm for predicting the target.22 A decision tree's
basic concept is to divide a difficult decision into several
easier ones, which may result in a solution that is easier
to understand. The subset to be assigned is referred to as
the target variable in the decision tree technique, whilst
the data characteristics act as predictor variables. The
non-parametric algorithm effectively manages large,
intricate datasets without requiring a sophisticated para-
metric framework. A decision tree is a model that resem-
bles a tree in which every internal node denotes a test on
a particular feature, every branch denotes the test's result,
and every leaf offers a prediction. The regression task's
mean square error is minimized by finding the best split
(best variable and threshold value) at each node. Let X be
the input features matrix and y be the target vector. The
DT model recursively partitions the dataset into subsets
X1,X2,…,Xm based on the optimal split criteria. At each
node n, the algorithm minimizes the mean squared error
(MSE) to determine the split:

F nð Þ¼ 1
jn j

X
i � n

yi� ynð Þ2 ð2Þ

where jn j is the number of samples in node n, yi is the
target value of sample i, and yn is the mean target value
in node n.

2.3.2 | Random forest regressor

An ensemble of uncorrelated tree predictors makes up a
random forest, where each tree is dependent on a ran-
dom vector's values.23 This vector has an identical distri-
bution among all the trees in the prediction and is
sampled separately for each tree. Random features are
chosen for every tree during the induction phase, adding
a bit of variation to each unique model in the ensemble.
The ensemble's predictions are combined to determine
the RF's prediction.24 In regression tasks, the predictions
are averaged. This ensemble strategy reduces over-fitting
and captures a wider range of patterns in the data,
improving the model's resilience and capacity for general-
ization. The average of the forecasts made by each deci-
sion tree may be used to represent the Random Forest
prediction.

F xð Þ¼ 1
B

XB
b¼1

f b xð Þ ð3Þ

Where F xð Þ is the overall prediction, B is the total num-
ber of trees in the forest, and f b xð Þ represents the predic-
tion of the b-th tree for input features x.

In a way similar to the decision tree regressor, the
splitting rule at each internal node is established by ran-
domly selecting a feature and threshold. By maximizing
each decision tree's parameters to reduce the mean
square error, the random forest regressor is trained. By
minimizing overfitting and identifying a broader variety
of patterns in the data, the average of all decision trees
yields the final prediction, which enhances prediction
performance, robustness, and generalization.

2.3.3 | Linear regression

Linear regression is a statistical technique used a lot in
modeling the relationship between a target or response
variable and one or more predictors or features. The lin-
ear regression model is one of the easy model to build, as
by default the model has no regularization term. The lin-
ear regression equation is given by:

Y ¼ β0þβ1 �X1þβ2 �X2þ…þβn �Xnþϵ ð4Þ

TABLE 1 Overview of varied process parameters.

Parameter Units Min-value Max-value

CO2-content % 0 6

Water temperature �C 35 55

Knife cutting speed U/min 2000 4500

Water pressure bar 0 10

Die hole (Diameter) mm 2 � 1,4 1 � 2,8

Die plate temperature �C 160 190

4 of 11 SHAH ET AL.
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Here, X1,X2,…,Xn are the predictors, and β0,β1,…,βn are
the corresponding coefficients.

The primary objective of linear regression is to find
the value of the coefficients that minimize the sum of the
square differences between the observed values of the
dependent variable and the value predicted.

2.3.4 | LASSO regressor

Lasso regression with L1 regularization is a linear regres-
sion approach in which a penalty term is added based on
the absolute values of the regression coefficients.18 By set-
ting certain coefficients to absolutely zero, this regulari-
zation technique encourages sparse models and works
well for feature selection. The LASSO minimize the
objective function:

β̂0, β̂lasso ¼ argmin
β0,β

XN
i¼1

Yi�β0þβTXi
� �2þ λ

XP
j¼1

jβjj
( )

ð5Þ

Where, β0 is the intercept term, β is the vector of coeffi-
cients, Xi is the feature vector for the i-th sample, Yi is
the experimental value for the i-th sample, and λ is the
regularization parameter, controlling the strength of the
regularization. Ultimately, LASSO improves the inter-
pretability and effectiveness of the modeling process by
providing accurate predictions and serving as a useful
tool for automated feature selection.

2.3.5 | Gradient boosting regressor

Gradient Boosting Regression is a powerful ensemble
learning method that builds a predictive model by com-
bining the strengths of several weak learners, frequently
represented as decision trees. The fundamental idea is to
fit novel models iteratively to the residuals of predictions
made by previous models. The performance of the model
as a whole is gradually improved through this repeated
refining process. The model is the sum of all the weak
learners,

F xð Þ¼F0 xð Þþϵ
XM
m¼1

γmhm xð Þ ð6Þ

Where, F xð Þ is the current approximation of the target
function. hm xð Þ is a weak learner to be added to improve

the approximation and ϵ is the learning rate and m¼ 1 to
M (number of boosting rounds).

This iterative, optimization-based method makes sure
that every new weak learner is designed with the inten-
tion of correcting errors found in the ensemble's overall
predictions. GBR systematically improves the model's
ability to detect subtle patterns and subtleties in the data
by giving priority to the reduction of residuals. The resul-
tant ensemble not only yields robust and precise predic-
tions but also demonstrates exceptional adaptability to
intricate relationships inherent in real-world datasets.
The resulting ensemble is able to adapt very well to com-
plex interactions found in real-world datasets, while still
producing strong and accurate predictions.

2.3.6 | Support vector regressor

For regression problems, SVR is a potent machine learn-
ing technique that works differently from conventional
regression techniques. The decision boundaries around
certain data points called support vectors, which can be
defined by the features in the dataset are optimized by
SVR. SVR aims to find the optimal hypertube that best
fits the data points while minimizing prediction errors.
Epsilon ϵð Þ, a parameter introduced by SVR, is the mar-
gin that represents the model's error tolerance and is
often referred to as the ϵ-insensitive hypertube.

y¼ f xð Þ¼ w,xh iþb ð7Þ

where:

• y is the predicted output,
• x represents the input features,
• w is the weight vector,
• w,xh i denotes the dot product between w and x,
• b is the bias term.

The training of SVR involves finding the optimal
values for w and b while considering the tube defined by
ϵ. SVR seeks to minimize the following objective
function:

min
w,b

1
2
kwk2þC

Xn
i¼1

max 0ð ,k f xið Þ� yi k�ϵÞð Þ2 ð8Þ

In this case, the regularization value C strikes a com-
promise between obtaining a narrow margin and a low
training error. SVR is an adaptable technique that works
well for a variety of regression problems. Kernel-based

SHAH ET AL. 5 of 11
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SVR is excellent at describing non-linear correlations
in data.

2.3.7 | Performance metrics

To analyze and interpret the results of ML, it is always
important to present the value of the error metrics to
show the effectiveness of the respective model. The statis-
tical error is calculated by using the following mathemat-
ical formulation or equations 9, 10, and 11, that is, the
coefficient of determination (R2 score), the mean absolute
error (MAE), and the root mean squared error (RMSE).

MAE is define as:

MAE¼ 1
n

Xn
i¼1

j yi� ŷi j ð9Þ

where n represent the samples, and yi and ŷi denote the
true predicted target properties, respectively, for sample i.
RMSE is expressed as:

RMSE¼ 1
n

Xn
i¼1

yi� ŷið Þ2
 !1=2

ð10Þ

The R2 score quantifying the ratio of explained vari-
ance to total variance in a regression model, is
defined by:

R2 y, ŷð Þ¼ 1�
Pn

i¼1 yi� ŷið Þ2Pn
i¼1 yi� yð Þ2 ð11Þ

In this equation, y represent the average target
property.

3 | RESULTS AND DISCUSSION

This work employed four distinct regression ML models
to develop a prediction model for the bead foam density

and the melt pressure in UWG in the bead foam extru-
sion, which were extensively discussed earlier in the sec-
tion 2.3. Linear regression model served as the reference
model. The linear regression model cannot captured the
relationship between the target and feature, yield a nota-
bly negative R2 score. For getting deep insight, we
explore more advanced model. Tables 2 and 3 presents
statistical measurements for all machine learning models
that predict melt pressure and bead foam density. Three
key metrics were used to thoroughly assess the models:
the R2 score, the MAE, and the RMSE. These metrics pro-
vide information on the precision and accuracy of each
model's predictions.

1. R2 score is the percentage of variance in the target
variable (melt pressure) that can be accounted for by
each of the models. A value that is near to 1.0 indi-
cates a better fit.

2. MAE is the average size of error between the expected
and actual values. Better forecast accuracy is shown
by lower MAE values.

3. RMSE quantifies the overall magnitude of errors, giv-
ing more weight to larger errors. Lower RMSE values
indicate better precision in predictions.

Also, the graphical representation of all the perfor-
mance metrics are shown in Figure 4. The
Figure illustrate the comparison of all the error metrics
for both target properties, that is, melt pressure in UWG
and bead foam density.

3.1 | Correlation analysis of processing
parameters

A correlation analysis serves as a statistical tool to quanti-
tatively assess the direction and strength of a linear rela-
tionship between variables. In numerical terms, this
association is typically quantified by a decimal value
referred to as the correlation coefficient, called Pearson
correlation coefficient. In our study on PLA bead foam
extrusion, we have examined various processing

TABLE 2 Statistical measures of different ML models for

predicting the melt pressure in UWG for the test set.

Model R2 score MAE RMSE

Decision Tree (DT) 0.861 1.533 2.090

Random Forest (RF) 0.964 0.851 1.071

Gradient Boosting (GBR) 0.919 1.140 1.546

Lasso Regressor (LASSO) 0.933 1.096 1.396

TABLE 3 Statistical measures of different ML models for

predicting the bead density for the test set.

Model R2-score MAE RMSE

Decision Tree (DT) 0.835 0.185 0.225

Random Forest (RF) 0.682 0.529 0.579

Gradient Boosting (GBR) 0.632 0.241 0.337

Support Vector Regressor (SVR) 0.543 0.576 0.716

6 of 11 SHAH ET AL.
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parameters, including extrusion temperature, pressure,
screw speed, and die design. The correlation matrix, visu-
alized in Figure 2, offers a comprehensive overview of
the pairwise correlations between these parameters. The
visual representation in the heatmap provides a quick
and intuitive understanding of how each processing
parameter relates to each others. The range of Pearson

correlation is �1< corr < 1. This range indicates that a
correlation coefficient close to 1 signifies a robust positive
linear relationship, while a coefficient near �1 signifies a
strong negative correlation. Values close to 0 suggest a
weak or negligible linear relationship. This statistical
approach aids in identifying potential interdependencies
between processing parameters, which assist the

FIGURE 2 Heatmap matrix illustrating correlations between processing parameters, encompassing both features and target properties

in the dataset. Red cells denote positive correlations, while blue cells represent negative correlations. [Color figure can be viewed at

wileyonlinelibrary.com]

SHAH ET AL. 7 of 11

 10974628, 2024, 30, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/app.55693 by U

niversitaet B
ayreuth, W

iley O
nline L

ibrary on [06/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


researchers and scientists in making informed decisions
regarding process optimization and control. It's important
to note that correlation does not imply causality, and fur-
ther analyses may be needed to uncover the underlying
mechanisms driving these relationships.

Note that, at this point, no model has been con-
structed. Figure 2 merely highlights wide patterns across
the entire dataset.

Upon a detailed analysis of the correlation heatmap
presented in Figure 2, it becomes apparent that, through-
out the bead foam extrusion process, all the processing
parameters exert some level of influence on each other.
This intricate interconnectivity implies a sophisticated
interplay among the parameters, contributing to the com-
plex dynamics observed in the studied system. Signifi-
cantly, specific parameters exhibit a more pronounced
impact, evident in the emergence of block correlations
within the heatmap. These correlations manifest as clus-
ters of variables demonstrating a robust interdependence
of higher degree. Notably, a distinct dense red color block
or cluster is observed at the top of the heatmap, indicat-
ing a strong positive correlation (0.94) between the
Amount of Blowing Agent and the Pressure. This correla-
tion suggests that an increase in the blowing agent's
quantity is strongly correlated with an increase in injec-
tor pressure.

In our analysis, we observe instances of negative cor-
relation within the heatmap, manifesting as distinct blue
clusters across the visualization. Notably, a clear negative
correlation exists between specific parameters. For
instance, the parameters temperature adapter (B-
Extruder-UWG), temperature starting switch and melt
temperature (UWG) exhibit a negative correlation with
amount of blowing agent and the injector pressure, that
is, (Correlation = �0.80, �0.83, �0.85), respectively.
These coefficients signify a robust negative correlation
between these parameters, implying a highly inverse
relationship.

According to the insights provided by Figure 2, we
obtain a comprehensive overview and visualization of the
correlations among the target properties. Focusing on
the first target property, which is the melt pressure in
UWG, we observe strong positive correlations with pres-
sure of melt in B-extruder and temperature starting switch,
while negative correlations are evident with die size and
pressure, respectively. Analyzing the second target prop-
erty, that is, bead foam density, we observe numerous cor-
relations, with the most significant ones being positively
correlated with CO2 content or amount of blowing agent,
temperature of melt in B-extruder, and water pressure in
UWG, respectively. Due to the intricate interrelation of
various processing parameters on both target properties,
we have established a threshold for correlation values.

Specifically, we consider correlations with an absolute
value jcorrj<0.20 as statistically insignificant for our sub-
sequent machine learning analysis. This threshold helps
filter out weak correlations, allowing us to focus on more
meaningful relationships in the dataset.

3.2 | Prediction models for melt pressure
in UWG

For melt pressure in UWG, major features include CO2

content, injector pressure (bar), temperature in
B-extruder, temperature starting switch, temperature die
plate, and die hole size. This relationship is visually
shown in the correlation heat-map Figure 2. After a com-
prehensive evaluation of various machine learning
models, encompassing both linear and non-linear
approaches, the objective was to identify the optimal
model capable of accurately capturing the complex rela-
tionship between the identified features and the target
variable (melt pressure) in bead foam extrusion. MAE
and RMSE, quantify the deviation between predicted and
experimental melt pressure.

The coefficient of determination R2 score, MAE, and
RMSE values are presented in the Table 2. These results
provide a comprehensive overview of the predictive capa-
bilities of each model. The higher R2 score indicate better
overall performance, while lower MAE and RMSE values
signify greater precision in predicting the pressure of melt
within the UWG. Figure 4a demonstrate the comparison
graphically based on the models used to predict the melt
pressure.

In this case, the RF model emerges as the most effec-
tive, possess the R2 score at 0.96, accompanied by the
lowest MAE of 0.851 and RMSE of 1.071. These results
underscore the model's performance and efficiency in
capturing complex relationships within the data. DT,
LASSO, and GBR models also demonstrate acceptable
results, showing robust performance and highlighting
their potential for accurate predictions. Collectively, these
outcomes provide valuable insights into the strengths
and limitations of each model, facilitating the selection of
an optimal predictive tool for estimating melt pressure in
the UWG. The relationship between the predicted values
from the regression model and the actual values is visu-
ally presented in Figure 3. Data points closely aligned
with the perfect prediction line indicate a substantial
compatibility between the predicted and observed values.
The closer the point is to the perfect prediction line, the
better is the model performance. Some of the predictions
are showing significantly large, which is the result of the
limited number of samples used to train the ensemble
model.
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3.3 | Prediction models for bead density

Predicting bead density proves to be a challenging
task, due to interconnected and correlated factors that
influence the final outcome. To address this chal-
lenge, several machine learning models were trained
and tested specifically for this task. However, only the
most promising models demonstrated the capability
suitable for obtaining improved results, which can be
used for further study. A significant hurdle in dealing
with bead density lies in the dataset's inherent devia-
tion. Given that the primary objective in bead foam
extrusion is to achieve low-density bead foams, the
dataset exhibits considerable bias. Key features
influencing bead density prediction include CO2 con-
tent, Injector pressure (bar), Temperature in B-extruder,
temperature starting switch, die plate temperature, melt
temperature in B-extruder, and melt pressure in
B-extruder. Analyzing the heatmap in Figure 2 revealed
that density is influenced by numerous other features
beyond the primary parameters, because of the process's
complexity. The data complexity is visually represented
in Figure 6a, illustrating a log-normal distribution of den-
sity data, signifying positive skewness.25 This positively
skewed distribution adds complexity to the data, making
it challenging to train a machine learning model for accu-
rate prediction. To address this challenge, a proper data
normalization technique was essential. Utilizing a stan-
dardized log-normalized approach, the data was pro-
cessed, resulting in the distribution shown in Figure 6b,
which now conforms to a normal distribution. This nor-
malization step is crucial for facilitating the training of a
machine learning model to predict the target variable,
that is, bead density. The log-normal distribution is a
helpful tool that is used often in material and chemical
research because of diverse physical mechanism and
modeling. Normalizing the data ensures that compari-
sons between different datasets are meaningful and reli-
able, as it brings uniformity to the data by removing
biases introduced by factors such as differences in sample
size or measurement units. This ensures fair comparison
and prevents skewed interpretation of experimental
results.

For predicting the bead density, out of all the ML
model used, the Decision Tree model demonstrated high
performance, with R2 score of 0.83, signifying that it
explains approximately the 83% of the variance in pre-
dicting the bead density. Moreover, it exhibited lower
MAE and RMSE values compared to the other models.
These values highlight the capability of DT model to
effectively capture and clarify a substantial portion of the
variance within the dataset. The visual representation of
the correlation between the predicted values derived

FIGURE 3 Comparison between the true value of melt

pressure and predicted value of the melt pressure in UWG based on

random forest regressor. The model is based on the MAE, RMSE

and R2 score after cross validation. [Color figure can be viewed at

wileyonlinelibrary.com]

(a)

(b)

FIGURE 4 Graphical representation of performance metrics

for melt pressure in UWG in subplot (a) and bead density across

different models in subplot (b). [Color figure can be viewed at

wileyonlinelibrary.com]
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from the regression model and the corresponding actual
values can be observed in Figure 5.

On the other hand, the other models also shows per-
formance with R2 score of 0.68, 0.63 and 0.54,
respectively.

4 | CONCLUSION

In the present study, we have successfully showcased a
machine learning approach to predict key properties of
PLA bead foams, with a specific focus on melt pressure
in the UWG and bead foam density. This innovative
approach enhances our ability to understand and predict
processing parameters and targets in bead foam extrusion
more accurately. The study includes a detailed descrip-
tion of the best-performing ML model. Notably, the RF
model exhibits excellent performance in predicting melt
pressure in UWG, while the DT model performs well in
predicting bead density. These models, in particular, have
demonstrated effectiveness in capturing and illustrating
the relationships among all processing parameters in
PLA bead foam extrusion.

The study also clarifies the correlation of different
processing parameters, such as temperature, pressure,
screw speed, die plate temperature, and bead properties
(i.e., density), leading to a comprehensive understanding
of their impact on each other. It underscores the signifi-
cance of optimizing these parameters to achieve desired
foam properties and enhance the efficiency of the extru-
sion process. The correlation analysis has revealed key
relationships between specific processing parameters and
the final target. For example, variations in temperature
were observed to significantly influence foam expansion
and bead density. Additionally, an increase in CO2 con-
tent was found to have high impact on pressure in the
B-extruder. The most influential parameters for predict-
ing melt pressure in UWG were identified as CO2 con-
tent, injector pressure, temperature in B-extruder,
temperature starting switch, temperature die plate, and
die hole size. Similarly, crucial parameters for predicting
density included CO2 content, injector pressure, tempera-
ture in B-extruder, temperature starting switch, tempera-
ture die plate, melt temperature in B-extruder, and melt
pressure in B-extruder.

This successful demonstration of machine learning
applications not only advances our understanding of PLA
bead foam but also paves the way for further optimiza-
tion of bead foam extrusion in other polymers.
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