URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7346-9
Titelangaben
Kurz, Sascha:
Divisible minimal codes.
Bayreuth
,
2023
. - 14 S.
Volltext
|
|||||||||
Download (353kB)
|
Abstract
Minimal codes are linear codes where all non-zero codewords are minimal, i.e., whose support is not properly contained in the support of another codeword. The minimum possible length of such a k-dimensional linear code over GF(q) is denoted by m(k,q). Here we determine m(7,2), m(8,2), and m(9,2), as well as full classifications of all codes attaining m(k,2) for k<=7 and those attaining m(9,2). For m(11,2) and m(12,2) we give improved upper bounds. It turns out that in many cases attaining extremal codes have the property that the weights of all codewords are divisible by some constant &\Delta;>1. So, here we study the minimum lengths of minimal codes where we additionally assume that the weights of the codewords are divisible by &\Delta;.
Weitere Angaben
Publikationsform: | Preprint, Postprint |
---|---|
Keywords: | minimal codes; divisible codes |
Fachklassifikationen: | Mathematics Subject Classification Code: 94B05 (51E23) |
Themengebiete aus DDC: | 000 Informatik,Informationswissenschaft, allgemeine Werke > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik |
Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Wirtschaftsmathematik Fakultäten |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-7346-9 |
Eingestellt am: | 05 Dec 2023 07:51 |
Letzte Änderung: | 05 Dec 2023 07:51 |
URI: | https://epub.uni-bayreuth.de/id/eprint/7346 |