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Abstract

Minimal codes are linear codes where all non-zero codewords are minimal, i.e., whose support is
not properly contained in the support of another codeword. The minimum possible length of such a k-
dimensional linear code over Fq is denoted by m(k, q). Here we determine m(7, 2), m(8, 2), and m(9, 2),
as well as full classifications of all codes attaining m(k, 2) for k ≤ 7 and those attaining m(9, 2). For
m(11, 2) and m(12, 2) we give improved upper bounds. It turns out that in many cases attaining extremal
codes have the property that the weights of all codewords are divisible by some constant ∆ > 1. So, here
we study the minimum lengths of minimal codes where we additionally assume that the weights of the
codewords are divisible by ∆.

1 Introduction

Let Fq be a finite field of cardinality q and C ⊆ Fn
q be a linear code. If C has cardinality qk, then we speak

of an [n, k]q-code. A non-zero codeword c ∈ C is called minimal if the support supp(c) := {i | ci ̸= 0} of
c is minimal with respect to inclusion in the set {supp(u) | u ∈ C\0}. The code C is a minimal code if all
of its non-zero codewords are minimal. One of the many applications of minimal codes is secret sharing,
see e.g. [AB98]. An important line of research is the determination of the minimum possible length n of
a minimal [n, k]q-code, which we denote by m(k, q). In e.g. [ABNR22, Theorem 2.14] the lower bound
m(k, q) ≥ (q + 1)(k − 1) was shown. Here we determine m(7, 2), m(8, 2), and m(9, 2), as well as full
classifications of all codes attaining m(k, 2) for k ≤ 7 and those attaining m(9, 2). For m(11, 2) and m(12, 2)
we give improved upper bounds.

A linear [n, k]q-code is called ∆-divisible if all of its weights are divisible by ∆. For some background
we refer e.g. to the recent survey [Kur21]. Minimal codes constructed by concatenation with simplex codes,
see e.g. [ABN23, BB23], naturally come with a non-trivial divisibility constant ∆ > 1. The unique example
attaining m(2, q) = q, which geometrically corresponds to the points of a line, is q-divisible. For k′ ≤ 3 all
minimal binary codes of length m(2k′, 2) are 2-divisible and for dimension k = 8 there are minimal binary
codes of length m(8, 2) = 24 that are 2-divisible while not all examples are of this type. In [Kur23] it was
shown that the unique minimal code attainingm(5, 3) = 19 is 3-divisible. So, at least for the small parameters
we have considered here there exist q-divisible examples of minimum possible size m(k, q) whenever the lower
bound (q − 1)(k − 1) + 1 on the minimum distance, see Theorem 2.(b), is divisible by q.1 We remark that
also some constructions for minimal codes are based on few-weight codes, which often have a non-trivial
divisibility constant, see e.g. [MS19, SF20, SL21]. Due to the mentioned possible relations between minimal
and divisible codes we introduce the minimum possible length n = m(k, q; ∆) of a ∆-divisible minimal [n, k]q-
code. Here we initiate the study of m(k, q; ∆) and give bounds and exact values, both computationally and
theoretically.

The remaining part of this paper is structured as follows. In Section 2 we state the necessary preliminaries
before we study bounds and exact values for m(k, q; ∆) in Section 3. For the special case of binary minimal
codes with trivial divisibility ∆ = 1 we study the minimum possible length m(k, 2; 1) = m(k, 2) in Section 4.

1The second case where this condition is met, after the first k = 2, is at dimension k = q + 2.
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2 Preliminaries

First we consider the well-known correspondence between (non-degenerated) [n, k]q-codes and multisets of
points in the projective space PG(k − 1, q) of cardinality n, i.e., the columns of a generator matrix each
generate a point, see e.g. [DS98]. We represent each multiset of points in PG(v − 1, q) by a mapping
M : P → N≥0 from the set of points P in PG(v − 1, q) to the non-negative integers, i.e., to each point P
we assign a multiplicity M(P ). We extend this notion to arbitrary subspaces S by defining M(S) as the
sum over all point multiplicities M(P ) for all points P in S. The cardinality of M , i.e., the sum of the
multiplicities of all points, is denoted by #M . We say that a multiset M of points is spanning if the points
with positive multiplicity span the entire ambient space.

Definition 1. A multiset M of points in a projective space is called a strong blocking multiset if for every
hyperplane H, we have ⟨S ∩H⟩ = H.

If M is the multiset of points associated to a linear code C, then C is minimal iff M is a strong blocking
multiset, see e.g. [ABN22, TQLZ21]. Directly from the definition of a strong blocking multiset we can read
off that a multiset of points in PG(1, q) is a strong blocking multiset iff it contains every point of the entire
projective space. Clearly adding points to a multiset does not destroy the property of being a strong blocking
multiset, so that we consider minimal strong blocking sets in the following, i.e., set of points that are a strong
blocking multiset but such that every proper subset is not a strong blocking multiset. So, in PG(1, q) the
unique minimal strong blocking set is a line, so that

m(2, q) = q. (1)

Since each linear code associated to the point set of a k-dimensional subspace over Fq is q-divisible, see e.g.
[KK20, Lemma 2.a], we have

m(2, q; q) = q (2)

for each positive integer ∆. For dimension k = 1 we clearly have m(1, q) = 1 and m(1, q; ∆) = ∆ for all
∆ ∈ N≥1.

The representation of a linear code C by a multiset of points M is pretty useful. If we multiply the
multiplicity M(P ) of every point P by some positive integer t, the cardinality as well as the divisibility is
increased by a factor of t. So, we have

m(k, q) ≤ m(k, q; ∆) ≤ ∆ ·m(k, q) (3)

for all ∆ ∈ N≥1. Our examples for dimensions 1 and 2 show that both bounds can be attained with equality.
Similarly, we have

m(k, q; ∆) ≤ m(k, q; t ·∆) ≤ t ·m(k, q; ∆) (4)

for all ∆, t ∈ N≥1. If t is coprime to q, then a t-divisible linear code over Fq is a t-fold repetition of a smaller
code, see e.g. [War81, Theorem 1]. So, we have

m(k, q; t ·∆) = t ·m(k, q; ∆) (5)

for all t ∈ N≥1 with gcd(q, t) = 1. For binary codes we can consider extension by a parity bit to conclude

m(k, 2; 2) ≤ m(k, 2; 1) + 1. (6)

Given a linear code C the weight wt(c) of a codeword c ∈ C is the number of non-zero entries. With
this, the minimum Hamming distance d of C is the minimum weight over all non-zero codewords of C. If
an [n, k]q-code has minimum Hamming distance d then we also speak of an [n, k, d]q-code. We summarize
the current knowledge on general bounds for the length n, the minimum (non-zero) weight wmin, and the
maximum (non-zero) weight wmax of a minimal linear code as follows:
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Theorem 2. For each minimal [n, k]q-code we have

(a) n ≥ (q + 1)(k − 1);

(b) d = wmin ≥ (k − 1)(q − 1) + 1; and

(c) wmax ≤ n− k + 1.

Proof. For (a) see e.g. [ABNR22, Theorem 2.14], for (b) see e.g. [HN21, Theorem 23] or [ABNR22, Theorem
2.8], and for (c) see [ABNR22, Proposition 1.5].

3 Minimum lengths of divisible minimal codes

In this section we consider the determination of the smallest possible length n = m(k, q; ∆) of a minimal
∆-divisible [n, k]q-code. For dimensions k ≤ 2 the results are stated easily using the geometric reformulation
of linear codes as multisets of points. Clearly, we have m(1, q; ∆) = ∆ attained by a ∆-fold point. For
dimension k = 2 each point has multiplicity at least 1 since the code has to be minimal. From ∆-divisibility
we conclude that the point multiplicities are pairwise congruent modulo ∆, so that the minimum possible

length is attained if all point multiplicities are equal. Thus, we have m(2, q; ∆) = (q+1)∆
q if ∆ is divisible by

q (attained by a ∆/q-fold line) and m(2, q; ∆) = (q + 1)∆ (attained by a ∆-fold line). Due to Equation (5)
it suffices to consider the cases where ∆ does not contain a non-trivial factor t that is coprime to the field
size q.

If the divisibility constant is large enough, when considering power of the characteristic only, we can give
a precise answer:

Proposition 3. For r ≥ k − 1 we have m(k, q; qr) = qr−k+1 · qk−1
q−1 .

Proof. Since the code is qr-divisible we have d ≥ qr, so that we can apply the Griesmer bound for the lower
bound. An attaining example is given by the qr−k+1-fold full k-space.

Proposition 4. For k ≥ 2 we have m
(
k, 2; 2k−2

)
= 2k − 1.

Proof. Since the k-dimensional simplex code is 2k−1-divisible and minimal, we have m
(
k, 2; 2k−2

)
≤ 2k − 1,

so that we assume n ≤ 2k − 1 for the length of an attaining code C. Note that the possible non-zero weights
of C are given by i · 2k−2 for 1 ≤ i ≤ 3.

If c ∈ C is a codeword of weight 3 · 2k−2, then the corresponding residual code Cc has length at most
2k−2 − 1 and dimension k− 1 (since C is minimal). Thus, we have k ≥ 3 and Cc is 2k−3-divisible with 2k−3

as the unique non-zero weight. Since one-weight codes are repetitions of simplex codes, see e.g. [Bon84], Cc

can have dimension of at most k − 2 — contradiction.
So, let a1 be the number of codewords of weight 2k−2 and a2 be the number of codewords of weight

2k−1. From the first two MacWilliams equations we compute a1 + a2 = 2k − 1 and 2n = a1 + 2a2, so that
a1 = 2k+1 − 2 − 2n, i.e., a1 is even. Since the code is minimal, the sum of any two different codewords
of weight 2k−2 has again weight 2k−2, i.e. the codewords of the smallest weight form subcode and we have
a1 = 2t − 1 for some integer t.2 Thus, we have t = 0 and a1 = 0, i.e., we have d ≥ 2k−1 for the minimum
distance and can apply the Griesmer bound for the lower bound n ≥ 2k − 1.

For parameters not covered by these two propositions and dimension k ≥ 3 we have applied the software
LinCode for the enumeration of linear codes [BBK21] using the bounds for the minimum and maximum
possible weight in Theorem 2 and also using the weight restrictions implied by the divisibility constant ∆.
For field sizes q = 2 and q = 3 we summarize our numerical results in Table 1. With this, m(k, q; ∆) is
completely determined for k ≤ 9 if q = 2 and for k ≤ 5 if q = 3.

2We remark that ∆-divisible linear codes spanned by codewords of weight ∆ have been completely classified in [KK23a].
Note that there exists a 2k−2-divisible linear code of length 2k−1 and dimension k satisfying a1 = 2k − 2, a2 = 1. However,
this code, corresponding to an affine subspace, is not minimal.
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k 4 4 5 5 5 6 6 6 6 7 7 7 7 7
q 2 2 2 2 2 2 2 2 2 2 2 2 2 2
∆ 1 2 1 2 4 1 2 4 8 1 2 4 8 16
m(k, q; ∆) 9 9 13 14 17 15 15 18 36 20 21 26 42 84

k 8 8 8 8 8 8 9 9 9 9 9 9 9 10
q 2 2 2 2 2 2 2 2 2 2 2 2 2 2
∆ 1 2 4 8 16 32 1 2 4 8 16 32 64 4
m(k, q; ∆) 24 24 29 45 90 174 26 27 30 58 96 192 384 31

k 10 10 10 10 3 3 4 4 4 5 5 5 5
q 2 2 2 2 3 3 3 3 3 3 3 3 3
∆ 8 16 32 64 1 3 1 3 9 1 3 9 27
m(k, q; ∆) 60 93 186 366 9 12 14 15 38 19 19 48 116

Table 1: Exact values of m(k, q; ∆) for small parameters where q ∈ {2, 3}.

Lemma 5. For each integer t ≥ 2 we have m
(
2t, 2; 2t−1

)
≤ 3 · (2t − 1).

Proof. Consider the linear code C corresponding to three pairwise disjoint t-dimensional subspaces of PG(2t−
1, 2). With this, C is an [3 · (2t − 1) , 2t]2-code with non-zero weighs 2 · 2t−1 and 3 · 2t−1, which is minimal
due to the Ashikhmin-Barg condition [AB98].

We remark that the constructed projective two-weight code contains to the family SU2 in [CK86]. While
equality is attained in Lemma 5 for t ∈ {2, 4, 5}, we have m(6, 2; 4) = 18 < 21.

The interesting codes, i.e. those that cannot be obtained by repetitions of smaller codes, are given by
11111111111010000
00000111111101000
00111000111100100
01011011001100010
11100001011100001


attaining m(5, 2; 4) = 17 with weight enumerator 1 + 25x8 +6x12 and an automorphism group of order 720,
as well as 

111111111110100000
000001111111010000
001110001111001000
010110110011000100
111000010111000010
011011100101000001


attaining m(6, 2; 4) = 18 with weight enumerator 1 + 45x8 + 18x12 and an automorphism group of order
2160, see [BE97]. For the first code we remark that the automorphism group is isomorphic to the symmetric
group S6 and has point orbits in PG(4, 2) of sizes 1, 15 and 15. The unique point has multiplicity 2 in
the attaining construction and the points in one of the other classes have multiplicity 1. The unique code
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attaining m(7, 2; 8) = 42 is given by

111111111111111111111110000000000001000000
000000000001111111111111111111111100100000
000000000110000001111110000011111110010000
000000001010001110001110011100011110001000
111111111100110010010110101101100110000100
000000010011000110110010110110101010000010
000000100010011010111001011010100110000001


with weight enumerator 1 + 45x16 + 82x24 and an automorphism group of order 138240. Considered as a
multiset of points in PG(6, 2) the automorphism group forms three point orbits of sizes 1, 36, and 90 with
point multiplicities 6, 1, and 0, respectively. There are 62 non-isomorphic doubly-even minimal [29, 8]2-codes.
One example is given by 

11111111111111100000010000000
00000001111111111100001000000
00011110000111100011100100000
00100110111001100101100010000
01011011001010101110000001000
11001001010011110010100000100
01110010010011111001000000010
00111000100101011101100000001


with weight enumerator 1 + 114x12 + 119x16 + 22x20 and an automorphism group of order 3.

There are two non-isomorphic 8-divisible minimal [45, 8]2-codes. Both have weight enumerator 1 +
45x16 + 210x24 and are projective two-weight codes, see [CK86] for more details. One example is given by
the construction in Lemma 5. The orders of the automorphism groups are 3628800 and 120960. The unique
code attaining m(8, 2; 32) = 174 is given by

1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
10000000000000000000000000000000000000000000000000000000000000000000000010000000

0000000000000000000000000000000000000000000000011111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111100000000000000000000000001000000

0000000000000000000000000000000111111111111111100000000000000001111111111111111111111111111111
10000000000000001111111111111111111111111111111111111111111111100000000000100000

0000000000000000000000011111111000000001111111100000000111111110000000000000000000000001111111
10000000111111110000000000000000000000001111111100000001111111111111110000010000

0000000000000000000001100000011000000110000001100000011000000110000001111111111111111110000001
10000011000000110000001111111111111111110000001100000110000001100000111000001000

0000000000000000000110000111111001111110000110000001100001111110011110000000000000000110000110
00001100001111110011110000000000000000110000110001111110000110001111110100000100

0011111111111111111010001011111010001000111011101110111010001000101111111111111111111110001010
01110111010001000101110000000000000000110001010010001000111011110111110100000010

1100000000000000001110111101101110111011011110110111101110111011110111111111111111111010111110
10010001000010010000011111111111111111010010000100010010001000100001011000000001


with weight enumerator 1 + 69x64 + 186x96 and an automorphism group of order 61931520. One of the five
codes attaining m(9, 2; 2) = 27 is given by

111111111110000000100000000
000001111111111100010000000
001110001110011111001000000
010110010010101101000100000
111000110101100111000010000
110011010001110001000001000
001100111001001110000000100
101010111000011001000000010
011111010011011010000000001


with weight enumerator 1 + 90x10 + 164x12 + 84x14 + 123x16 + 50x18 and an automorphism group of order
48. There are 9 non-isomorphic codes attaining m(9, 2; 4) = 30. All of them have weight enumerator
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1 + 190x12 + 255x16 + 66x20. An example with an automorphism group of order 10 is given by

111111111111111000000100000000
000000011111111111000010000000
000111100001111000111001000000
001011100110011011001000100000
011101101010001100011000010000
101010110000001101111000001000
010011010000110111101000000100
111010000111001110010000000010
111001001100011101100000000001


.

There are 3 non-isomorphic codes attaining m(9, 2; 8) = 58. All of them have minimum distance d = 24.
An example with weight enumerator 1 + 194x24 + 311x32 + 6x40 and an automorphism group of order 384
is given by 

1111111111111111111111111111111000000000000000000100000000
0000000000000000000111111111111111111111110000000010000000
0000000000000111111000000111111000001111111111100001000000
0000000111111000011111111000011000110000110001110000100000
0001111000011001111001111111111011110000110111101000010000
0110000011100011100000001011100101010111110010011000001000
1110001000101110101000110011101010101111000000010000000100
0011110001100111100010010000000010100111011110110000000010
0001110001110000110000000100111111010111101100001000000001


.

The unique code attaining m(9, 2; 16) = 96 is given by
111111111111111111111111111111111111111111111110000000000000000000000000000000000000000100000000
000000000000000000000001111111111111111111111111111111111111111111111100000000000000000010000000
000000000001111111111110000000000001111111111110000000000011111111111111111111111000000001000000
000001111110000001111110000001111110000001111110000011111100000011111100000111111111110000100000
011110011110011110011110000110000110000110000110111100111100111100111100011000011000111000010000
101110101110101110101110001010001010001010001011011101011101011101011100101000101001011000001000
000110110111100110100010010010011110111010011000001101101111001101000111101001100011111000000100
110011111010010000100110101100111110001000110100000110010110100111011101101111011110010000000010
001010000110010010010100011110101111010111010111101101111010110110101110010010010010011000000001


with weight enumerator 1 + 18x32 + 472x48 + 21x64 and an automorphism group of order 41472. There
are two codes attaining m(10, 2; 4) = 31. Both have weight enumerator 1 + 310x12 + 527x16 + 186x20, an
automorphism group of order 155, and are distance-optimal. Corresponding generator matrices are given by

1111111111111110000001000000000
0000000111111111110000100000000
0001111000011110001110010000000
0010111001100110110010001000000
0111011010100011000110000100000
1010101100000011011110000010000
1111010101101011111010000001000
1011100000101111100100000000100
0111101011001000011010000000010
1110110000111000010110000000001


and



1111111111111110000001000000000
0000000111111111110000100000000
0001111000011110001110010000000
0010111001100110110010001000000
0111011010100011000110000100000
1010101100000011011110000010000
0100110100001101111010000001000
1110100001110011100100000000100
1001010001001011110110000000010
0011100111010100011010000000001


.

[MS77, Chapter 8] contains a construction of an infinite family of (2m − 1, 2m) cyclic codes with three
different nonzero weights is given for odd m. As observed in [CL85, Example 6], choosing m = 5 yields a
4-divisible minimal [31, 10, 12]2 three-weight code. For m(10, 2; 2) we have verified that length 28 cannot be
attained. There are three codes attaining m(10, 2; 8) = 60, all with weight enumerator 1+270x24+735x32+
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18x40. The example with an automorphism group of order 69120 is given by

111111111111111111111111111111100000000000000000001000000000
000000000000000111111111111111111111110000000000000100000000
000000011111111000000001111111100000001111111000000010000000
000000000001111000011110000111100011110001111111000001000000
000111111111111000011110011001101100110110011011100000100000
011001100110011001100111100110000000000001111011010000010000
101010100001100000101000001011100011001111101100110000001000
101010101110111110011110100101110001000111111001110000000100
101010111000000010011010111110101111110010111111110000000010
101010100010001111111001101000100100010001100010110000000001


.

The unique code attaining m(10, 2; 16) = 93 is given by the construction in Lemma 5. It has weight
enumerator 1 + 93x32 + 930x48 and an automorphism group of order 59996160.

The unique code attaining m(10, 2; 64) = 366 is given by

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000000000000000000000000000000000000000

00000000000000000000000000000000000000000000000000000000000000000000000000000000001000000000
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
11111111111100000000000000000000000000000000000000000000000000000000000000000000000100000000

00000000000000000000000000000000000000000000000111111111111111111111111111111111111111111111111000000000000000000000000000000000000000000000
00011111111111111111111111111111111111111111111111100000000000000000000000000000000000000000000000111111111111111111111111111111111111

11111111111111111111111111111111111111111111111111111111111000000000000000000000000010000000
00000000000000000000000000000001111111111111111000000000000000000000000000000001111111111111111000000000000000000000000000000001111111111111

11100000000000000000000000000000000111111111111111100000000000000000000000000000001111111111111111000000000000000000000000000000001111
11111111111100000000000000000000000000000001111111111111111111111111111111000000000001000000

00011111111111111111111111111110000111111111111000000000000111111111111111111110000000000001111000000000000000000001111111111110000111111111
11100000000000000000000000000001111000000000000111100000000000111111111111111111110000000000001111000011111111111111111111111111110000

11111111111100000000000000000001111111111110000111111111111000000000001111111000000000100000
00000000000111111111111111111110000000000001111000000001111000011111111111111110000000011110000000000000000000000000000000011110000000000001

11100000000000000000000000011110000000000001111000000000001111000011111111111111110000000011110000000000000000111111111111111111110000
00000000111100000000000000000000000000011110000000000001111000000011110000000111000000010000

01100111111111111111111111111110011001111111111000000110000001111111111111111110000001100000011001111111111111111110011111111110011001111111
11100000011111111111111111100000011000000110000001100000110000001100000000000000000000001100000011001100111111000000000000000011110011

00111111111100000000000000000110011111111110011001111111111000001100000011011000100000001000
00000000011000000000000000000110000000000110011000011000011000011111111111111110000110000110000111111111111111111111100111100111111110011110

01100111100000000000000001100111111001111110011111101111110011111111111111111111110011111100111111111111001111000000000000000000111111
11001111001101111111111111111000000001100110000000000110011000110000110000000011010000000100

00000000101011111111111111111011111110111010101000101000101000011111111111111110111011101011111110000000000000000111101011101010000000100010
10101011100000000000000001101011111010001000101000010111110101111111111111111111110100010001010000111111010111111111111111111101010000

00010001010100000000000000000000000010101011111110111010101111011101011111000101010000000010
10101001000001111111111111111000101010001000000001000010000010100000000000000000001000100000101010000000000000000010100000100000101010000100

00000000111111111111111110100000101000010010000010100001010000010111111111111111110000100100000101010101000001000000000000000000000101
01000010000011111111111111111010100100000000101010001000000001000100000101101000100000000001


with weight enumerator 1 + 141x128 + 882x192 and an automorphism group of order 27745320960.

The unique code attaining m(3, 3; 3) = 12 is given by111111110100
000011221010
011200022001


with weight enumerator 1 + 6x6 + 20x9 and an automorphism group of order 48. For m(4, 3; 3) = 15 there
are two attaining non-isomorphic codes. They are two-weight codes with weight enumerator 1+50x9+30x12

and belong to the families FE1 and FE4 in [CK86]. The unique code attaining m(4, 3; 9) = 38 is given by
11111111111111111111111111000000001000
00000000111111111222222222111111110100
00000012000012222000011112000122220010
01111200001200111001201110012000000001


with weight enumerator 1 + 12x18 + 68x27 and an automorphism group of order 384. The unique code
attaining m(5, 3; 9) = 48 is given by

111111111111111111111111111111111110000000010000
000000000000000001111111112222222221111111101000
000000000111111120000111120111122220001222200100
000000001011111210111001202012211121222000200010
000000000200122202012222221221201210022012200001


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with weight enumerator 1+6x18+92x27+144x36 and an automorphism group of order 96. The unique code
attaining m(5, 3; 27) = 116 is given by(

11111111111111111111111111111111111111111111111111111111111111111111111111111111000000000000000000000000000000010000
00000000000000000000000000111111111111111111111111111222222222222222222222222222111111111111111111111111110000001000
00000000000000111111222222000000111111222222222222222000000111111111111111222222000001111112222222222222221111100100
00000000012222012222012222011112011112000000000011112000012000000000000012000012122220122220000000000122220001200010
00000000110112220122000012101121201222000000000000120011211000000000012222001200000121101120000000002201221121100001

)

with weight enumerator 1 + 30x54 + 212x81 and an automorphism group of order 89856.

For q = 4 also fractional powers of the field size need to be considered. For small parameters we have
obtained m(3, 4; 1) = 12, m(3, 4; 2) = 14, m(3, 4; 4) = 15, m(3, 4; 8) = 21, m(4, 4; 1) = 18, m(4, 4; 2) = 19,
m(4, 4; 4) = 20, m(4, 4; 8) = 40, m(4, 4; 16) = 62, and m(4, 4; 32) = 85. As the number suggest, we have a
similar result as Proposition 4 for q = 4:

Proposition 6. For k ≥ 2 we have m
(
k, 4; 22k−3

)
= 4k−1

3 .

Proof. Since the k-dimensional simplex code is 4k−1-divisible and minimal, we have m
(
k, 4; 22k−3

)
≤ 4k−1

3 .
The possible non-zero weights of an attaining code C are given by i · 22k−3 for 1 ≤ i ≤ 2. By 3ai we denote

the corresponding number of codewords, so that the first two MacWilliams equations yield a1 + a2 = 4k−1
3

and 2n = a1 + 2a2. With this, a1 = 2 · 4k−1
3 − 2n is even. However, the assumption that C is minimal

implies that the sum of any two different codewords with weight ∆ := 22k−3 also has weight ∆. Thus, the
codewords of weight ∆ form a subcode implying that a1 = 4t−1

3 for some integer t.3 With this we conclude
t = 0 and a1 = 0, i.e., we have d ≥ 4k−1 for the minimum distance and can apply the Griesmer bound for

the lower bound n ≥ 4k−1
3 .

4 Minimum lengths of binary minimal codes

As introduced before, we denote by m(k, q) the minimum possible length n of a minimal [n, k]q-code. In
this section we will consider binary minimal codes only. The values m(1, 2) = 1, m(2, 2) = 3, m(3, 2) = 6,
m(4, 2) = 9, m(5, 2) = 13, and m(6, 2) = 15 are known since a while, see [Slo93]; c.f. also [dCK21, Table 1]
and [ABN22]. The bounds 19 ≤ m(7, 2) ≤ 21, m(8, 2) ≤ 25, m(9, 2) ≤ 29 were reported in [Slo93].4 For
m(10, 2) ≤ 30 we refer to [CZ94, Section II.A]. Constructions from [BB23] yield m(12, 2) ≤ 42, m(15, 2) ≤ 54,
m(16, 2) ≤ 63, and [Slo93] states m(11, 2) ≤ 41, m(13, 2) ≤ 51.

As rigorously analyzed in [Sco23], the lower bound m(k, q) ≥ (q+1)(k−1) (see Theorem 2.(a)) cannot be
attained if k is sufficiently large since the minimum distance d ≥ (k− 1)(q− 1) + 1 = k (see Theorem 2.(b))
cannot be attained with equality for n = (q + 1)(k − 1); c.f. [Slo93, Theorem 4]. Indeed, the data at
www.codetables.de on possible minimum distances of [n, k]2-codes implies m(9, 2) ≥ 26, m(10, 2) ≥ 28,
m(11, 2) ≥ 31, m(12, 2) ≥ 34, m(13, 2) ≥ 39, m(14, 2) ≥ 41, m(15, 2) ≥ 45, and m(16, 2) ≥ 47. We remark
that [Sco23] also contains theoretical proofs for m(k, 2) > 3(k − 1) for k ∈ {5, 7, 8, 9, 11, 13}.

Here we determine m(7, 2) = 20, m(8, 2) = 24, and m(9, 2) = 26, as well as full classifications of all codes
attaining m(k, 2) for k ≤ 7 and those attaining m(9, 2). For m ∈ {11, 12} we give constructions for the
improved upper bounds m(11, 2) ≤ 35 and m(12, 2) ≤ 40.

For k ≤ 4 the attaining examples are unique up to equivalence and have nice geometric descriptions, i.e.,
the corresponding strong blocking sets are given by a point, a line, a plane minus a point, and a hyperbolic
quadric. Theoretical uniqueness proofs are pretty simple for k ≤ 3 and for k = 4 we refer to [Sma23].
Alternatively we can describe the example for k = 4 as the union of three disjoint lines.5 The next value

3We remark that ∆-divisible linear codes spanned by codewords of weight ∆ have been completely classified in [KK23a].
4The authors of [BDGP23] have determined m(7, 2) = 20 and m(8, 2) ≤ 24 via ILP computations – personal communication.
5A sketch of a direct uniqueness proof is given as follows. The standard equations for a projective [n, 4]2 code with minimum

weight 4 and maximum weight n − 3 yield n ≥ 9 and weight enumerator 1 + 9x4 + 6x6 for n = 9. Thus, the complement
is a 2-divisible projective code of length 6 and dimension k, which has to be the union of two disjoint lines, see e.g. [KK23b,
Proposition 17].
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m(5, 2) = 13 is attained by exactly two non-equivalent codes given e.g. by generator matrices
1111110010000
0001111101000
1110010100100
0010101100010
0101010100001

 and


1111111010000
0001111101000
0110011100100
1010101100010
0101110000001

.
The corresponding weight enumerators and orders of the automorphism groups are given by 1+8x5+8x6+
4x7 + 7x8 + 4x9, 1 + 6x5 + 12x6 + 4x7 + 3x8 + 6x9 and 8, 48, respectively. For m(6, 2) = 15 there is again a
unique example given e.g. by the generator matrix

111111100100000
000111110010000
011001101001000
100011101000100
001110101000010
011010110000001


of a BCH code, see [CL85]. This code has weight enumerator 1+30x6+15x8+18x10 and an automorphism
group of order 360. For a description of this code as the concatenation of two codes we refer to [BB23].

We remark that all above extremal codes meet the bounds for the minimum weight wmin ≥ (k − 1)(q −
1)+1 = k (see Theorem 2.(b)) and the maximum weight wmax ≤ n−k+1 (see Theorem 2.(c)). Using these
bounds we have applied the software LinCode for the enumeration of linear codes [BBK21] to determine
m(7, 2) = 20 and m(8, 2) = 24. For k = 7 there are 33 non-equivalent extremal codes (all with wmin = 7 and
wmax = 14). Generator matrices for those with more than eight automorphisms are given by

11111111100001000000
00001111111100100000
00110011101110010000
01010101110110001000
11011000110100000100
10001000111010000010
11110010010010000001


,



11111111100001000000
00001111111100100000
00110011101110010000
01010100111110001000
10111001110100000100
11100101110010000010
11000110100110000001


,



11111111100001000000
00001111111100100000
00110011101110010000
01010100111110001000
10111001110110000100
11101010001100000010
11001001011010000001


,



11111111100001000000
00001111111100100000
00110011101110010000
01011101100110001000
11111100111010000100
10110100100110000010
01001101011010000001


.

We remark that there are 88010 minimal [22, 7, 8]2-codes. None of them can be extended to a minimal
[23, 8, 8]2-code. There are e.g. 2778120 minimal [22, 6, 8]2-codes. Due to the large number of subcodes
we have not enumerated all extensions. So far we have enumerated 2459606 minimal [23, 7, 8]2 and 31994
minimal [24, 8, 8]2 non-isomorphic codes. One example is given by the generator matrix

111111111111100010000000
000000011111111101000000
000111100011101100100000
011000100100111100010000
001001101101110000001000
000010111000011100000100
110111100001110000000010
010001000011110100000001


with weight enumerator 1 + 18x8 + 30x9 + 30x10 + 30x11 + 22x12 + 42x13 + 42x14 + 26x15 + 15x16 and an
automorphism group of order 6. (There is also one example with an automorphism group of order 18.) We
remark that most of the examples satisfy wmin = 8, wmax = 17, and all intermediate weights occur. Another
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example, that is 2-divisible, is given by the generator matrix

111111111111100010000000
000000011111111101000000
000111100011101100100000
001011100101110100010000
011101100110110000001000
001110111101011100000100
001001101100001100000010
101100011100100000000001


and has weight enumerator 1+28x8+60x10+72x12+68x14+27x16. So far, we found 258 such non-isomorphic
examples.

For dimension k = 9 we have slightly changed our algorithmic approach. Using the fact that adding a
parity bit to a binary code yields a 2-divisible (also called even) code, we have enumerated all 2-divisible
minimal [n, 9]2-codes with n ≤ 27. It turns out that there are exactly 5 such non-isomorphic codes with
length n = 27 and none with a strictly smaller length. If C is a minimal [n, 9]2-code that is not even, that
adding a parity bit yields an even minimal [n + 1, 9]2-code. Inverting this operation, we have deleted a
column of the above five codes in all possible ways and obtained 34 non-isomorphic [26, 9, 9]2-codes of which
exactly 4 are minimal, i.e., we have m(9, 2) = 26. One example is given by

11111111110000000100000000
00001111111111100010000000
01110001110011111001000000
00110010010101101000100000
11010010101100111000010000
01110110000010110000001000
01101010110110001000000100
10011100101001011000000010
11001101001100010000000001


with weight enumerator 1 + 32x9 + 62x10 + 64x11 + 84x12 + 64x13 + 44x14 + 64x15 + 43x16 + 32x17 + 22x18

and an automorphism group of order 16.

For dimension k = 10 we remark that [CZ94, Section II.A] reports an example verifying m(10, 2) ≤ 30.
The idea was to puncture a 4-divisible (cyclic) minimal [31, 10, 12]2 code. In Section 3 we have determined
all 4-divisible minimal [31, 10, 12]2 codes. There are exactly two such non-isomorphic codes and also two
non-isomorphic puncturings with generator matrices

111111111111110000001000000000
000000111111111110000100000000
001111000011110001110010000000
010111001100110110010001000000
111011010100011000110000100000
010101100000011011110000010000
111010101101011111010000001000
011100000101111100100000000100
111101011001000011010000000010
110110000111000010110000000001


and



111111111111110000001000000000
000000111111111110000100000000
001111000011110001110010000000
010111001100110110010001000000
111011010100011000110000100000
010101100000011011110000010000
100110100001101111010000001000
110100001110011100100000000100
001010001001011110110000000010
011100111010100011010000000001


.

The codes both have an automorphism group of order five and weight enumerator 1 + 120x11 + 190x12 +
272x15 + 255x16 + 120x19 + 66x20.
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In order to construct small minimal codes in dimensions 11 and 12 we consider a geometric construction.
If M is a multiset of points and Q is a point in PG(v − 1q), where v ≥ 2, then we can construct a
multiset MQ by projection trough Q, that is the multiset image under the map P 7→ ⟨P,Q⟩/Q setting
MQ(L/Q) = M(L)−M(Q) for every line L ≥ P in PG(v−1, q). We directly verify the following properties:

Lemma 7. Let M be a strong blocking multiset PG(k − 1, q), where k ≥ 2, and let MQ arise from M by
projection through a point Q. Then we have #MQ = #M −M(Q), the span of MQ has dimension k − 1,
and MQ is a strong blocking multiset.

By M ′ we denote the set of points that have positive multiplicity in MQ, so that also M ′ is a strong
blocking (multi-)set in PG(k−1, q)/Q ∼= PG(k−2, q), i.e., we can reduce points with multiplicity larger than
one to multiplicity one. So, starting from a minimal [n, k]q-code C we consider the corresponding multiset of
points M , apply projection through a point Q, reduce point multiplicities to obtain M ′, and then consider
the corresponding minimal [#M ′, k]q-code C ′.

As an example we consider the binary code
1111110010000
0001111101000
1110010100100
0010101100010
0101010100001


attaining m(5, 2) = 13. Choosing Q as the first column of the generator matrix gives the code C ′ with
generator matrix 

001111101
001100110
010101100
101010100

,
which is a representation of the unique code attaining m(4, 2) = 9, i.e., the union of three disjoint lines.
In our examples the lines through column 1 that contain at least three points (which is the maximum for
q = 2 and projective codes) are given by the triples of column indices (1, 2, 13), (1, 3, 12), and (1, 9, 11).
Also choosing the point Q as the second column yields a minimal [9, 4]2-code, while all other columns yield
(minimal) codes of larger lengths. For projective binary codes or point sets M in PG(k− 1, 2) the geometric
description of the cardinality of M ′ equals #M−1 minus the number of full lines through Q. I.e., if Q equals
the first or the second column, then there are exactly three full lines through Q, which is the maximum since
m(4, 2) ≥ 9. If Q equals the last column then there is unique full line through Q and there are exactly two
full lines through Q in all other cases.

Applying projection to the second non-isomorphic code attainingm(5, 2) = 13 yields minimal [10, 4]2- and
a minimal [12, 4]2-code. Applying projection to the unique minimal [9, 4]2-code yields the unique minimal
[6, 3]2-code in all cases. This continues for dimension three and two, as can be easily seen from the geometric
description of the extremal point sets. Applying projection to the unique minimal [15, 6]2-code yields minimal
[13, 5]2-codes in all cases (which all have automorphism groups of order 48, i.e. are equivalent to second non-
isomorphic [13, 5]2-code). We remark that in [Slo93, Table I] the example for a minimal [13, 5]2-code was
described as “omit coordinates 1,6 from” the (unique) minimal [15, 6]2-code. In the same vein a minimal
[29, 9]2-code was constructed from a minimal [31, 10]2-code. We remark that applying projection to the
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minimal [26, 9]2-code 

11111111111000000100000000
00000111111111100010000000
00111000111001111001000000
01011001001010101000100000
11100011110100011000010000
00101111010001110000001000
10001100111011001000000100
10110101110111111000000010
11001001110110100000000001


gives minimal [n, 8]2-codes for n ∈ {24, 25}. This phenomenon also occurs for field sizes larger than 2.

The inversion of the projection transformation gives rise to an integer linear programming formulation
to search for minimal codes of small length. Starting with the first minimal [30, 10]2 code let us find the
following minimal [35, 11]2 code with generator matrix

11011110101100100010110010010101000
01000000000011000110110110000011100
00110000000101000110111101011100100
00001000000010011000011100000010111
00000100000101011110111010101110101
00000010000111010110010101100000001
00000001100011010000111011010010001
00000000010001001110010111001110011
00000000001111000000001111000001111
00000000000000111110000000111111111
00000000000000000001111111111111111


,

weight enumerator 1 + 19x11 + 83x12 + 142x13 + 118x14 + 125x15 + 194x16 + 296x17 + 356x18 + 237x19 +
141x20 +134x21 +102x22 +67x23 +29x24 +4x25 and a trivial automorphism group. Applying the approach
again yields the following minimal [40, 12]2 code with generator matrix

1001110000000101010110100110011101010111
0100011001011100100110000000011000111101
0000011111001000110010100000011000110010
0000001001010111001110010000000100111000
0011001101011000111100000000001000001011
0000100011010111101000001000010000001101
0000010011010011011100000100000100000011
0000010111001100111010000010001100001111
0000001111000111100110000001000000000001
0000000000111100011110000000111100000111
0000000000000011111110000000000011111111
0000000000000000000001111111111111111111



,

weight enumerator 1 + 21x12 + 70x13 + 120x14 + 173x15 + 183x16 + 261x17 + 408x18 + 493x19 + 560x20 +
521x21 + 408x22 + 319x23 + 240x24 + 167x25 + 88x26 + 39x27 + 19x28 + 5x29 and a trivial automorphism
group. We remark that both ILP computations were aborted before finishing.
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