Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

How Useful is Statistical Skewness of Financial Data in Decision Making?

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00006960
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6960-9

Titelangaben

Baumann, Michael Heinrich:
How Useful is Statistical Skewness of Financial Data in Decision Making?
Bayreuth , 2023 . - 18 S.

Abstract

Statistical skewness is an important concept in the analysis of gambling and financial investment opportunities. Possibly, investors take the skewness of returns' distributions into account and, classically, search for highly skewed financial products. The concept of skewness can be used in some cases to explain or, perhaps, even predict decisions of agents. However, it is known from the literature that there are not only discrepancies between the formal definition of skewness via the third moment and the usual idea of skewness (as Pearson skewness) but also a mismatch between preference structures built on skewness and those built on expected utility. We contribute to the literature by showing via easy-to-understand, exemplary random variables that preference structures built on specific risk indicators - namely loss probabilities, worst-case losses, or value at risk - are, in general, inconsistent with those built on skewness. We illustrate the connection of risk and skewness on a basic level where we can explain the problem of mismatched preference structures avoiding unnecessarily complex mathematical models. Finally, we investigate the relationship between skewness respectively Pearson skewness and probabilities and prove mathematically that it is possible to make statements about probabilities in one special case, namely for random variables whose Pearson skewness values have different signs.

Weitere Angaben

Publikationsform: Working paper, Diskussionspapier
Keywords: skewness; preferences; risk measure
Fachklassifikationen: MSC codes 91B06, 91B08, 91B28, 91B30, 91B82

JEL codes C18, C44, D81, G11, G32
Themengebiete aus DDC: 300 Sozialwissenschaften > 330 Wirtschaft
500 Naturwissenschaften und Mathematik > 510 Mathematik
Institutionen der Universität: Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Angewandte Mathematik
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät > Fachgruppe Volkswirtschaftslehre
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayreuther Zentrum für Modellierung und Simulation (MODUS)
Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Rechts- und Wirtschaftswissenschaftliche Fakultät
Profilfelder
Profilfelder > Advanced Fields
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-6960-9
Eingestellt am: 14 Apr 2023 10:08
Letzte Änderung: 14 Apr 2023 10:08
URI: https://epub.uni-bayreuth.de/id/eprint/6960

Downloads

Downloads pro Monat im letzten Jahr