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Abstract

Statistical skewness is an important concept in the analysis of gambling and
financial investment opportunities. Possibly, investors take the skewness of re-
turns’ distributions into account and, classically, search for highly skewed finan-
cial products. The concept of skewness can be used in some cases to explain
or, perhaps, even predict decisions of agents. However, it is known from the
literature that there are not only discrepancies between the formal definition
of skewness via the third moment and the usual idea of skewness (as Pearson
skewness) but also a mismatch between preference structures built on skewness
and those built on expected utility. We contribute to the literature by showing
via easy-to-understand, exemplary random variables that preference structures
built on specific risk indicators—namely loss probabilities, worst-case losses, or
value at risk—are, in general, inconsistent with those built on skewness. We
illustrate the connection of risk and skewness on a basic level where we can
explain the problem of mismatched preference structures avoiding unnecessarily
complex mathematical models. Finally, we investigate the relationship between
skewness respectively Pearson skewness and probabilities and prove mathemat-
ically that it is possible to make statements about probabilities in one special
case, namely for random variables whose Pearson skewness values have different
signs.
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1 Introduction

In decision and game theory the principle of maximizing the expected value of
some target variable—let it be utility [see von Neumann and Morgenstern, 1947]
or gain [cf. Bellman, 1954]—is one of the most widespread principles for solving
games or calculating equilibria. Yet, this maxim does not seem sufficient for
questions of finance, to which we also include lotteries and betting. Presumably,
most people care whether they get $1,000 as a fix amount or whether they can
flip a coin that pays them $2,000 if it’s heads and $0 if it’s tails.

We can model these decision alternatives via two random variables A and
B, which are, as all other random variables to appear, real-valued and assumed
to be defined on some adequate probability space. Consequently, we define A

and B with A = +1, 000 (w/ prob. 1) and B =

{
w/ prob. 0.5: 0

w/ prob. 0.5: +2,000
.

Because most people might care whether they take part in lottery A or
B, since the advent of modern portfolio theory [see Markowitz, 1952] [and cf.
Markowitz and Todd, 2000], so-called mean-variance analyses have become pop-
ular in finance. The basic assumption is that variance (or dispersion in general)
is a risk that should be avoided by the trader. In other words, variance can be
modeled as a cost that has to be balanced against the expected profit. Thus, the
trader does not exclusively maximize E[X] of a random variable X that models a
payoff but either seeks any Pareto-optimal choice that simultaneously promises
a high expected payoff and a low variance, or maximizes E[X] − λ

√
Var(X)

with a trader-specific parameter λ > 0 that models the trader’s idiosyncratic
risk appetite.

When two payoff profiles X and Y are equally preferable to a trader but
X has a larger variance than Y , it follows directly that X must in turn also
have a higher expected value than Y . This difference between the expected
values is referred to as the risk premium (cf. Steindl [1941] and Footnote 2 on
Page 43 therein for classical references and Fernandez [2020] for a recent review).
Conversely, this means that investment (or gambling) opportunities that have
no variance (and lie on the Pareto frontier) can only have the smallest possible
Pareto-optimal expected value. If we follow the idea of identifying variance and
risk, this can explain statements like “no-risk no-gain” [cf. Campi and Garatti,
2018, Section 4.1]. Thus, if one wants to expect (excess) gains, one has to
take risks. In modern portfolio theory there are two maxims. Either one looks
for the investment alternative with the lowest variance for a given minimal
desired expected payout, or one looks for the investment alternative with the
highest expected payout value for a given maximal risk (respectively dispersion)
tolerance.

What we have not yet taken into account is the distinction between down-
side and upside risk. Many traders are likely to be at least indifferent to the
‘risk’ of getting an unexpectedly large payout, if they do not even aspire to
it. However, the risk of an unexpectedly high loss (or, equivalently, an unex-
pectedly low payout) is the crucial deterrent. Monetary risk measures can help
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distinguishing between variance as a chance and variance as a risk [see Föllmer
and Schied, 2011, Chapter 4]. In principle following Föllmer and Schied [2011,
Definition 4.1], we define:

Definition 1. A function ρ that assigns real numbers (i.e. the risks) to financial
products is a monetary risk measure if for all two financial positions X and Y
it holds true that I) X ≤ Y ⇒ ρ(X) ≥ ρ(Y ) (monotonicity) and II) ρ(X+m) =
ρ(X)−m for all real m (cash invariance; translation property).

Monetary risk measures (which are sometimes shortly just called “risk mea-
sures”) may have further properties like “normalization,” “convexity,” “quasi
convexity,” “positive homogeneity,” or “subadditivity” [see Föllmer and Schied,
2011, Chapter 4]. However, these monetary risk measures are often very spe-
cific or can only be calculated under restrictive assumptions. This is why i.a.
statistical skewness is used as an alternative to distinguish between downside
and upside risk [see also Kraus and Litzenberger, 1976]. Skewness is not only
considered by researches in theoretical works on preferences and analyses of
gambling [see Garrett and Sobel, 1999] but may also be taken into account by
practitioners [cf. Kim and Park, 2020, Swedroe, 2015, Yang and Nguyen, 2019].

In this paper, we are going to show that the power of skewness to assess
risk (and, thus, risk-based preferences) is very limited. In doing so, we state
risk indicator and skewness measure definitions in Section 2, in which we also
mention advantages of skewness considerations. Section 3 briefly summarizes
some related work. In Section 4 we show with the help of easy-to-understand
examples that skewness is not always a meaningful target variable for financial
decisions. In Section 5 we look at theoretical connections between (Pearson)
skewness and probabilities. Finally, Section 6 presents possible future research
directions and concludes the paper.

2 Skewness and its Explanatory Potential

We begin this section with an example. We consider the two alternatives C and
D. Here, C is the alternative where we do not invest anything, i.e., C has a
payoff of zero (w/ prob. 1). In contrast, D has the following payoff profile:

D =

{
w/ prob. 0.99751 −10

w/ prob. 0.0024938 : +1, 995

Please note that here and so in the whole paper we round all values to five
significant digits. An exception are the plots in Figures 1 and 2 where we round
to two digits to enhance readability.

We can think of D as a possible lottery ticket which costs $10 and offers the
chance to win $2,005 with a rather small probability. It is easy to calculate that
E[C] = 0, sd(C) =

√
Var(C) = 0, E[D] = −5, and sd(D) = 100 hold. That is,

with a pure mean-variance analysis, every player/investor should prefer C over
D. However, the payout profile of D as a possible lottery ticket does not seem
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to be very unrealistic. Thus, one can easily imagine that there are people who
would buy a lottery ticket D. How can this be explained? Would there also be
any person who would invest in E with

E =

{
w/ prob. 0.022005 : −671.67

w/ prob. 0.97800 : +10

where also E[E] = −5 and sd(E) = 100 hold? It may be hard to imagine that
there are many people that prefer E over C. And even if one adds 10 to E,
i.e., F = E + 10 (from which E[F ] = +5 and sd(F ) = 100 follow), most people
might still prefer C (and D) over F . Concerning the concept of ‘preferences,’
we shall note that preferences are subjective and arise, among others, from
past experience, intuition, or instinct. We call a mathematical concept (such as
skewness or some specific risk measure) an explanation for a preference if this
concept can be used to calculate some indicator that is strictly monotonic in
the preference structure. Conversely, we call a preference structure based on a
mathematical concept if it can be explained by this concept.

One way to explain why E and also F are unlikely to be preferred over C
or D is the Worst-Case loss (WC), which is for discrete bounded below random
variables simply the smallest possible payoff that happens with positive proba-
bility. In general, one can express the worst-case loss in mathematical terms as
follows.

Definition 2. The worst-case loss WC(X) is the infimum of the support of the
distribution of the real-valued random variable X that models the gain.

Thus, the mathematical number “worst-case loss” can according to the above
definition in general also be minus infinity, leading to:

Theorem 1. The worst-case loss is no monetary risk measure.

That means that in this case the realized loss is not bounded below. In our
examples, WC(C) = 0, WC(D) = −10, WC(E) = −671.67, and WC(F ) =
−661.67 hold. With the help of the worst-case loss, however, one still cannot
explain why someone should prefer D over C. One possible answer to this is the
concept of skewness [cf. Golec and Tamarkin, 1998, Garrett and Sobel, 1999].

Remark 1 (Verbal). For example, one may think that distributions typically
have a large (positive) skewness if agents cannot make a large loss, have a very
large probability for making a small loss, and if there is the chance, albeit small,
of making a large gain. Conversely and also exemplarily, one may think that
distributions typically have a small skewness (i.e. a negative skewness with a
large absolute value) when traders have a high probability of making a small
profit but cannot make a large profit and face the, albeit small, risk of making a
large loss.

Remark 2 (Graphical). Viewed graphically, see Figures 1 and 2, one may think
of a positively skewed distribution as one that is skewed (i.e. flat) on the right
and steep on the left, likewise one may think of a negatively skewed one as one
that is skewed (i.e. flat) on the left and steep on the right.
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Such a graphical explanation is not mathematically precise and, in fact,
graphical ‘definitions’ of skewness might, just as the verbal examples (‘. . . if
agents cannot make a large loss, have a very large probability for making a
small loss, and . . . ’) be missleading [cf. von Hippel, 2005].

Hence, the question arises how to determine skewness formally. One possible
skewness definition is Fisher’s moment coefficient of skewness, which we simply
call skewness.

Remark 3. “Fisher’s moment coefficient of skewness” is sometimes also called
“moment coefficient of skewness” or—confusingly—“Pearson’s moment coeffi-
cient of skewness.”

The skewness v(X) of a random variable X can be written down similarly
to expected value, variance, and standard deviation by means of moments.

Definition 3. For a sufficiently often integrable random variable X with mean,
i.e. expected value, µ(X) = E[X], we denote its variance by σ2(X) = Var(X) =
E[(X − µ(X))2], its standard deviation by σ(X) = sd(X) =

√
σ2(X), and its

skewness (i.e. Fisher’s moment coefficient of skewness) by v(X) =

E
[(

X−µ(X)
σ(X)

)3]
if σ(X) 6= 0 and v(X) = 0 if σ(X) = 0.

Remark 4. Note that σ2(X) = E[X2]− µ(X)2 and v(X) =
E[X3]−3E[X2]µ(X)+2µ(X)3

σ(X)3 if σ(X) 6= 0 hold.

Remark 5. Definition 3 expands the standard definition of Fisher’s moment
coefficient of skewness by the zero-variance case. That way, we do not have
to exclude this case if necessary. When the variance is positive, this skewness
measure is the third standardized moment.
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Figure 1: Plots of the density functions of a β(2, 5) distribution (right-skewed)
on the left and a β(5, 2) distribution (left-skewed) on the right.

Returning to the lottery tickets from the beginning of this section, we see that
for C, D, E, and F the skewness evaluates to: v(C) = 0, v(D) = +19.95, and
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v(E) = v(F ) = −6.5167. This may indicate the explanatory power of skewness
[cf. Golec and Tamarkin, 1998, Garrett and Sobel, 1999] since it might explain
why someone may prefer D over C when assuming that agents prefer highly
skewed gains. Loosely spoken, we can think of a trader/agent, who prefers D
over C even though the worst-case loss is an argument against D, because D
(in the sense of skewness) makes much higher profits possible than C, but not
much worse losses.

Although Fisher’s moment coefficient of skewness is likely to be the most
widely used measure of skewness, we note that there are many alternative skew-
ness measures, some of which use statistical location parameters.

Definition 4. ‘A’ median is a value such that at least 50% of the probability
mass lies left of or on this median and at least 50% of the probability mass lies
right of or on this median. When there is exactly one median, we denote it by
med(X). When there is more than one median, we define—as commonly done—
‘the’ median med(X) as the midpoint of the closed interval of all medians.

Definition 5. The mode mod(X) of a random variable is the unique argu-
ment of the global maximum of its probability mass/density function respec-
tively the set of all arguments of the non-unique global maxima of its probability
mass/density function.

Remark 6. The mode does not have to exist. But we assume all random
variables in this work to have an unique mode if we use this mode (directly or
indirectly).

Remark 7. Via the last sentence of Definition 4, for any random variable X
and any c ∈ R the equality med(X + c) = med(X) + c holds. This is a property
also the mean and—when it exists and when it is unique—the mode have.

If we look at Figure 1 again, we see that for the distribution with positive
skewness, the mean lies on the right of the respective median med(X), for
the distribution with negative skewness, it lies on the other side. This is the
motivation for our next definition.

Definition 6. We define the Pearson skewness S(X) of an adequate random

variable X as S(X) = µ(X)−med(X)
σ(X) if σ(X) 6= 0 and S(X) = 0 if σ(X) = 0.

Remark 8. The Pearson skewness used in the work at hand is also known
as “nonparametric skew.” We note that there are other definitions of Pearson

skewness like µ(X)−mod(X)
σ(X) (“mode skewness” or “Pearson’s first skewness coeffi-

cient”) and 3·(µ(X)−med(X))
σ(X) (“median skewness” or “Pearson’s second skewness

coefficient”). Since we are only interested in comparisons of Pearson skewness
values or in their signs, the factor three is irrelevant for this work.

Note that for any random variable X and any c ∈ R the equalities v(X+c) =
v(X) and S(X + c) = S(X) hold, thus, neither skewness nor Pearson skewness
nor “minus skewness” nor “minus Pearson skewness” is cash invariant, which
leads to:
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Theorem 2. Neither skewness nor Pearson skewness nor “minus skewness”
nor “minus Pearson skewness” is a monetary risk measure.

Additionally, neither skewness nor Pearson skewness nor “minus skewness”
nor “minus Pearson skewness” is monotone: take any left/right (Pearson) skewed
distribution S (i.e. “v(X) < 0” resp. “S(X) < 0” or “v(X) > 0” resp. “S(X) >
0”) that is bounded above by zero and have a look at −X.

When we again come back to the lottery tickets example, we observe that
S(C) = 0, S(D) = +0.05, and S(E) = S(F ) = −0.15. Regarding Figure 1,
we observe that the β(2, 5) distribution is positively skewed, positively Pear-
son skewed, and mod(β(2, 5)) < med(β(2, 5)) < µ(β(2, 5)) holds. Further,
the β(5, 2) distribution is negatively skewed, negatively Pearson skewed, and
mod(β(2, 5)) > med(β(2, 5)) > µ(β(2, 5)) holds. This should be kept in mind
and is particularly interesting for the discussion which follows in the next para-
graph.

Von Hippel (2005) reports that many textbooks mention rules of the fol-
lowing type: a random variable is positively/negatively skewed—presumably
thought of in the sense of Fisher’s moment coefficient of skewness—if and only
if its mean lies on the right-/left-hand side of its median, i.e., if it has a posi-
tive/negative Pearson skewness. Some textbooks—again according to von Hip-
pel [2005]—extend this connection of mean, median, and skewness to a connec-
tion of mean, median, mode (in this order), and skewness. However, von Hippel
[2005] demonstrats with many examples (mainly discrete but also continuous
ones) that this ‘textbook rule’ does not have to hold in general. Also we give a
simple example where this rule does not hold. We define G as follows:

G =


w/ prob. 1 · 10−9 : −10, 000

w/ prob. 0.99999 : −0.0029899

w/ prob. 0.9999 · 10−5 : +300.01

Then µ(G) = 0, σ(G) = 1, v(G) = −729.99, and S(G) = +0.0029899 hold.
Thus, the desired counterexample sgn(v(G)) 6= sgn(S(G)) follows.

Remark 9. Additionally, von Hippel [2005] shows that for discrete distributions
some standard interpretation of the median does not have to hold.

Although skewness (and also Pearson skewness) may explain why agents
might prefer D over C, its explanatory power for preferences seems to be limited.
This becomes clear when having a look at H with

H =


w/ prob. 1 · 10−12 : −100

w/ prob. 0.8 : −50

w/ prob. 0.19999 : +174.31

w/ prob. 1 · 10−5 − 1 · 10−12 : +13, 959

.

Which alternative, D or H, would an agent prefer? Since µ(D) = −5 =
µ(H) and σ(D) = 100 = σ(H) hold, mean-variance considerations do not help
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answering this question. So, we have a look at (Pearson) skewness and calculate
v(H) = 28.307 and S(H) = 0.45, thus, H is positively skewed and positively
Pearson skewed as well as higher skewed than D and higher Pearson skewed
than D (recall: v(D) = 19.95 and S(D) = 0.05). Nonetheless, it is rather
unclear whether someone would prefer H over D. When we compare D and H,
we see that the probability for winning in D is 0.0024938 while the probability
for winning in H is nearly 0.2. Thus, the probability for winning in H is around
80 times the respective probability in D. The amount to be maximally won is
much higher in H, however, also the worst-case loss is with WC(H) = −100
much higher in H than in D (recall: WC(D) = −10). But is it really the worst-
case loss that determines agents’ preferences? We might doubt this since the
worst-case loss may be of limited explanatory power, which becomes obvious
when considering distributions with a support without lower bound (see, e.g.,
Figure 2 right-hand side).

Remark 10. In detail, in Figure 2 right-hand side, a Gumbel distribution is
depicted whose parameters are chosen in such way that µ(Gumbel) = 0 and
σ(Gumbel) = 1 hold, i.e. loc = −0.45005 and scale = 0.77970. Both the
Gumbel and the χ2(6) distribution (which is depicted on the left-hand side of
Figure 2) are positively skewed, positively Pearson skewed, and mod(χ2(6)) <
med(χ2(6)) < µ(χ2(6)) as well as mod(Gumbel) < med(Gumbel) < µ(Gumbel)
hold. The support of the χ2(6) distribution is R+

0 while the support of the Gumbel
distribution is R, in particular, WC(Gumbel) = −∞ holds.

Yet, even if the worst-case loss is a real number, as in the case of H, its
explanatory power for preferences is questionable. We observe that the proba-
bility for loosing 100 is only 1 · 10−12. We can imagine that one might say that
the event of losing 100 in H is ‘practically impossible’ (despite this statement
is mathematical vague). Thus, can the “−100” be ignored?
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Figure 2: Plots of the density functions of a χ2(6) distribution on the left and
a (shifted and scaled) Gumbel distribution on the right.

The monetary risk measure named Value at Risk (V@R) can be motivated
via this idea of neglecting very rare events such as the “−100” in H. For a
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random variable modeling a profit, the value at risk can be defined as follows
[see Föllmer and Schied, 2011, Example 4.11, Equation (4.41), and Section 4.4
in general].

Definition 7. Let X be a real-valued random variable modeling a profit and
α ∈ (0, 1). Then

V@R α(X) = inf{m ∈ R | P(X +m < 0) ≤ α}

is called the value at risk of X to the level α. The Loss Probability (LP) of X is

LP(X) = P(X < 0).

Theorem 3. The loss probability is no monetary risk measure since it is not
cash invariant. However, it is monotone.

Proof. 1.) Let X ∼ U([0, 1]). Then, LP(X) = 0 = LP(X + m) for all non-
negative m. 2.) Let X ≤ Y . Then, LP(X) = P(X < 0) ≥ P(Y < 0) =
LP(Y ).

Loosely spoken, the value at risk is the amount of money one has to add to
an investment opportunity such that the probability of loosing becomes smaller
or equal to α. The level α can be interpreted as the “level of risk” an agent resp.
trader is willing to take or as a probability that is so small that the trader does
not care about. Here we note that the value at risk has some disadvantages,
esp. it is not convex [see Föllmer and Schied, 2011, Section 4.4] and—although
V@R α(X + V@R α(X)) = 0 holds—it is possible that WC(X + V@R α(X)) =
−∞ (cf. Figure 2 right-hand side), i.e., the value at risk can be small while at
the same time the worst-case loss may be enormous.

Nonetheless, the value at risk is widespread in practice since it has some
advantages, too: it can be convex (under specific assumptions concerning dis-
tributions, portfolio types, and parameters), it is often easily computable, and
there is no smallest value-at-risk dominating convex risk measure [Föllmer and
Schied, 2011, Theorem 4.47]. When we come back to the question whether some-
one should prefer D or H, we might consider that LP(D) = 0.99751 > LP(H)
(which is an argument for H) but V@R 1%(H) = 50 > V@R 1%(D) = 10 (which
is an argument for D). That means, what speaks against H is not so much the
worst-case loss of −100 but that the probability for “−50” is 80% and, hence,
not neglectable (at a 1% level).

The next steps in this work are as follows: The succeeding section discusses
some of the related literature. In Section 4, we investigate connections between
skewness and loss probability, worst-case loss, as well as value at risk. Further, in
Section 5, we analyze connections between skewness as well as Pearson skewness
and probabilities.

3 Literature Review

In Golec and Tamarkin [1998], the behavior of bettors at horse tracks is investi-
gated empirically. For this reason, an adequate skewness measure is discussed.

9



It is reported that some literature concludes that bettors are risk loving (in the
sense of high variance), however, the conclusion in Golec and Tamarkin [1998] is
that bettors prefer high variance if it is connected to high skewness. In Garrett
and Sobel [1999] it is theoretically and empirically explained how skewness can
be used to explain why risk averse individuals take unfair gambles.

But not only in the field of games, gambles, and lotteries skewness has been
used to explain agents’ behavior. In finance, i.e. in portfolio selection, not only
mean-variance considerations are of importance but also skewness (or the gain’s
third moment; see Alderfer and Bierman Jr. [1970] and the references therein,
esp. Footnote 2). Although a large share of the literature cited up to now is quite
old (more than 40 years), the fundamental problem for financial decision makers
has not changed much and is also present in rather new branches of finance
such as ‘feedback trading’ [see Malekpour and Barmish, 2012, Baumann, 2022]
or ‘momentum investing’ [cf. Barroso and Santa-Clara, 2015, Martin, 2012]. A
trader i who uses a specific strategy Xp which depends on some parameter
vector p has to choose these parameters in an optimal way. When staying on
the mean-variance Pareto frontier, the parameters can be changed in such a
way that the mean becomes larger/smaller while at the same time the variance
becomes also larger/smaller. The question is which optimality criterion should
be used. For this end, ‘classical’ mean-variance considerations can help, e.g.,
p∗ = argmaxp{µ(Xp)− λiσ(Xp)}. This reduces the possibly high dimensional
problem of choosing p to a one dimensional problem of choosing λi. However,
it is not clear how λi should be chosen because the basic tradeoff between mean
and variance stays the same. The problem might become even worse when
keeping in mind that λi is rather abstract, i.e. hard to interpret for the trader.
Here, skewness might help since traders can (or at least: they think they can)
imagine what skewness is (maybe they have some plots like those in Figure 1
in mind). Hence, traders may specify a desired (idiosyncratic) skewness level
and choose λi (and so p) to match the desired skewness at the mean-variance
Pareto frontier. Such approaches are used in finance [cf., e.g., Briec et al., 2007,
Li et al., 2010]. In Szpiro [1991], the variance and the skewness of the risk are
used to model risk aversion. Mills [1995] describes the mathematical modeling
of skewness and kurtosis (i.e. of higher moments).

In Brockett and Kahane [1992] it is shown that preferences based on ex-
pected utility and preferences based on moments (mean, variance, skewness)
do not have to coincide. This is a strong hint that preferences based on risks
and preferences based on moments (mean, variance, skewness) might also be in
conflict in some cases. This is exactly what is shown in the next section. In Sec-
tion 5, one specific exception is proven; in detail: a specific case where certain
risk preferences may be deduced from Pearson skewness (see Theorem 8).

4 Examples

In this section, we show for three preference models that are based on risk
(namely based on loss probability, worst-case loss, and value at risk) that they
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can be in conflict with preferences based on skewness (i.e. on Fisher’s moment
coefficient of skewness).

Definition 8. Let X and Y be real-valued random variables and α ∈ (0, 1). We
define

X


�ξ
∼ξ
≺ξ

Y ⇔ ξ(X)


>

=

<

 ξ(Y ) and X


�ζ
∼ζ
≺ζ

Y ⇔ ζ(X)


<

=

>

 ζ(Y )

with ξ ∈ {v, S,WC} and ζ ∈ {LP,V@R α} as five possible preference mod-
els.

Remark 11. Note that for skewness v and Pearson skewness S we assumed
that traders prefer high values [cf. Golec and Tamarkin, 1998]. However, since
we are going to show non-monotonicity of these preferences, this assumption is
without loss of generality.

To demonstrate that preferences based on skewness and those based on risk
(in detail: on the risk indicators loss probability, worst-case loss, and value at
risk) do not necessarily coincide we look at different simple counterexamples. In
detail, we consider four-point distributed random variables, i.e., random vari-
ables that can take at most four different real values with positive probability.
To ensure comparability for all random variables considered in both the present
and the next section, µ(·) = 0 and σ2(·) = 1 hold, i.e., they are standardized.
This is an important point since otherwise it would be very easy to construct
random variables with arbitrary skewness values—but these random variables
would not necessarily be counterexamples in a mean-variance-skewness sense.

Remark 12. Note that for a four-point distribution when fixing the four prob-
abilities adequately, two values, the mean, and the variance, there are exactly
zero, one, or two possibilities for the remaining two of values.

4.1 Loss Probability

Let us have a look at the random variables I, J,K with

I =


w/ prob. 0.1 : −2

w/ prob. 0.25 : −1

w/ prob. 0.25 : +0.38462

w/ prob. 0.4 : +0.88462

,

J =


w/ prob. 0.1 : −1.4

w/ prob. 0.25 : −1

w/ prob. 0.25 : −0.28752

w/ prob. 0.4 : +1.1547

,
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K =


w/ prob. 0.1 : −1.5

w/ prob. 0.24 : −1

w/ prob. 0.4 : +0.043249

w/ prob. 0.26 : +1.4335

.

On the one hand v(I) = −0.75888, v(J) = +0.085498, v(K) = +0.18836
hold but on the other hand we observe LP(I) = 0.35, LP(J) = 0.6, LP(K) =
0.34. Thus,

I ≺v J ≺v K but J ≺LP I ≺LP K.

That means:

Theorem 4. The risk measured in terms of loss probability is not monotone in
skewness (neither increasing nor decreasing).

4.2 Worst Case Risk

When we have a look at I, J,K from Section 4.1, we observe that WC(I) = −2,
WC(J) = −1.4, and WC(K) = −1.5. Thus

I ≺v J ≺v K but I ≺WC K ≺WC J.

That means:

Theorem 5. The risk measured in terms of the worst-case loss is not monotone
in skewness (neither increasing nor decreasing).

4.3 Value at Risk

As explained in Section 2, it might be preferable to investigate the value at risk
rather than loss probabilities or worst-case losses. Here, we exemplarily use the
levels 5% and 10%. Hence, let us have a look at the random variables L,M,N
with

L =


w/ prob. 0.1 : −2

w/ prob. 0.1 : −1

w/ prob. 0.7 : +0.11195

w/ prob. 0.1 : +2.2164

,

M =


w/ prob. 0.1 : −1.9

w/ prob. 0.1 : −1.1

w/ prob. 0.7 : +0.10591

w/ prob. 0.1 : +2.2586

,

N =


w/ prob. 0.1 : −2.1

w/ prob. 0.1 : −1.05

w/ prob. 0.79 : +0.32207

w/ prob. 0.01 : +6.0564

.
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On the one side v(L) = +0.18972, v(M) = +0.33408, v(N) = +1.2061 hold
but on the other side we calculate V@R 5%(L) = +2, V@R 5%(M) = +1.9,
V@R 5%(N) = +2.1. Thus,

L ≺v M ≺v N but N ≺V@R 5%
L ≺V@R 5%

M.

That means:

Theorem 6. The risk measured in terms of the value at risk is in general not
monotone in skewness (neither increasing nor decreasing).

We showed this for the 5% level. Things become even worse when considering
additionally the 10% value at risk: V@R 10%(L) = +1, V@R 10%(M) = +1.1,
V@R 10%(N) = +1.05, thus,

L ≺v M ≺v N but M ≺V@R 10%
N ≺V@R 10%

L.

Further, the examples I, J , K from Section 4.1 as well as L, M , N from
the present section demonstrate that risk preferences built upon worst case loss
are generally inconsistent to those built on loss probabilities as well as that
preferences built on value at risk are inconsistent among different levels. This
is true because J ≺LP I ≺LP K but I ≺WC K ≺WC J and N ≺V@R 5%

L ≺V@R 5%
M but M ≺V@R 10%

N ≺V@R 10%
L hold.

5 Connections of Probabilities and (Pearson)
Skewness

In this section, we analyze the connections between skewness as well as Pear-
son skewness to (loss) probabilities in greater detail. When thinking about
Markov’s inequality [see, e.g., Georgii, 2012, Proposition 5.4 and esp. its proof]
or Chebyshev’s inequality, it might be quite natural to guess that one can con-
clude statements about (loss) probabilities from information about skewness
resp. third moments. Thus, when again having a look at Figure 1 one might
guess that, e.g., by means of Markov’s inequality a connection between the skew-
ness of two random variables and their probabilities to be above their respective
means could be proven. However, the following theorem shows that this is not
true.

Theorem 7. Let X and Y be two real-valued random variables with v(X) <
v(Y ). In general, one can conclude neither P(X < E[X]) < P(Y < E[Y ])
nor P(X < E[X]) ≤ P(Y < E[Y ]) nor P(X < E[X]) > P(Y < E[Y ]) nor
P(X < E[X]) ≥ P(Y < E[Y ]).

Proof. Proof of Theorem 7. The statement can either be derived from the
results provided by von Hippel [2005] or be easily seen by recalling I, J,K from
Section 4.1. It holds v(I) < v(J) but LP(I) < LP(J), and v(J) < v(K) but
LP(J) > LP(K), from which the statement follows when keeping in mind that
µ(I) = µ(J) = µ(K) = 0.
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We notice that σ(I) = σ(J) = σ(K) = 1 holds, i.e., the counterexample
does not rely on differing variances.

Now, the reader may ask for the intuition behind this result. Maybe, the
answer is that it is rather hard to imagine a third moment (upon which Fisher’s
moment coefficient of skewness is built). Rather, we might have plots like Fig-
ure 1 in mind when thinking about skewness. Via such visualizations Pearson
skewness can be motivated, especially the properties ‘positively Pearson skewed’
and ‘negatively Pearson skewed’ hold if and only if the mean is on the right
resp. left of the median. Indeed it turns out that positively/negatively Pearson
skewed is an adequate concept for making statements about probabilities, as
shown next.

Theorem 8. Let X and Y be two real-valued random variables with S(X) <
0 < S(Y ). Then the inequality P(X < E[X]) ≤ P(Y < E[Y ]) holds.

Proof. Proof of Theorem 8. We note that S(X) < 0 ⇔ µ(X) < med(X),
S(Y ) > 0 ⇔ med(Y ) < µ(Y ), and P(X ≥ med(X)) ≥ 0.5. Now, we calculate:

P(X < µ(X)) ≤ P(X ≤ µ(X)) ≤ P(X < med(X))

≤ 0.5 ≤ P(Y ≤ med(Y )) ≤ P(Y < µ(Y )) ≤ P(Y ≤ µ(Y )).

The last step in the proof is not necessary but may be of interest to the
reader, too. When comparing Theorems 7 and 8 we highlight three aspects: In
Theorem 8, i) the inequality is not strict, ii) the Pearson skewness instead of
Fisher’s moment coefficient of skewness is used, and iii) the Pearson skewness
values are separated by zero, i.e. the values have different signs. In the three
theorems to follow, we show that all these aspects are essential. First, a strict
inequality in Theorem 8 cannot be achieved, as the following theorem shows.

Theorem 9. Let X and Y be two real-valued random variables with S(X) <
0 < S(Y ). In general, P(X < E[X]) < P(Y < E[Y ]) does not hold.

Proof. Proof of Theorem 9. We consider O and P with

O =


w/ prob. 0.2 : −1.7944

w/ prob. 0.3 : −0.0037133

w/ prob. 0.4 : +0.5

w/ prob. 0.1 : +1.6

,

P =


w/ prob. 0.1 : −1.6

w/ prob. 0.4 : −0.5

w/ prob. 0.3 : +0.0037133

w/ prob. 0.2 : +1.7944

.

We compute S(O) = −0.24814 < 0 < S(P ) = +0.24814 and remark
LP(O) = LP(P ) = 0.5 (with µ(O) = µ(P ) = 0 and σ(O) = σ(P ) = 1).
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Clearly, this counterexample is based on the fact that there is more than one
median in each case. Further, it is not possible to replace the Pearson skewness
by the skewness in Theorem 8.

Theorem 10. Let X and Y be two real-valued random variables with v(X) <
0 < v(Y ). In general, one can conclude neither P(X < E[X]) < P(Y < E[Y ])
nor P(X < E[X]) ≤ P(Y < E[Y ]) nor P(X < E[X]) > P(Y < E[Y ]) nor
P(X < E[X]) ≥ P(Y < E[Y ]).

Proof. Proof of Theorem 10. Again we recall I, J,K from Section 4.1. It holds
v(I) < 0 < v(J) but LP(I) < LP(J) and v(I) < 0 < v(K) but LP(I) > LP(K),
from which the statement follows when keeping in mind that µ(I) = µ(J) =
µ(K) = 0.

As the last statement in this paper we formulate that in Theorem 8 the
separation by zero is essential.

Theorem 11. Let X and Y be two real-valued random variables with S(X) <
S(Y ). In general, one can conclude neither P(X < E[X]) < P(Y < E[Y ])
nor P(X < E[X]) ≤ P(Y < E[Y ]) nor P(X < E[X]) > P(Y < E[Y ]) nor
P(X < E[X]) ≥ P(Y < E[Y ]).

Proof. Proof of Theorem 11. We consider I and K from Section 4.1 and Q with

Q =


w/ prob. 0.1 : −1.5

w/ prob. 0.26 : −1

w/ prob. 0.4 : +0.15424

w/ prob. 0.24 : +1.4513

.

It holds µ(Q) = µ(I) = µ(K) = 0, σ(Q) = 1, S(I) = −0.38462, S(K) =
−0.043250, S(Q) = −0.15424, and LP(Q) = 0.36, thus,

S(I) < S(Q) < S(K) but LP(K) < LP(I) < LP(Q).

6 Conclusion and Future Research

In this paper, we discussed statistical skewness measures (Fisher’s moment co-
efficient of skewness as well as Pearson skewness) and elaborated with the help
of examples and the literature that preferences of agents, traders, players may
be explained with the help of skewness. However, we were able to show with
easy-to-understand examples that preference structures based on loss probabil-
ity, worst-case loss, or value at risk do not have to match those based on Fisher’s
moment coefficient of skewness. Furthermore, we analytically investigated the
relationship of Fisher’s moment coefficient of skewness as well as Pearson skew-
ness and probabilities. We proved that for two random variables, one of which
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is positively Pearson skewed and one of which is negatively Pearson skewed, the
probability of the positively Pearson skewed being below its expected value is
larger than those of the negatively Pearson skewed (below its respective expected
value), see Theorem 8.

From a practical point of view, the results in this paper might be noteworthy
insofar as traders might want to carefully consider whether to use skewness as a
proxy for a risk indicator or rather use a monetary risk measure that could better
suit their idiosyncratic needs. Also, traders should always be aware of the fact
that skewness and Pearson skewness can differ not only quantitatively but also
qualitatively [see von Hippel, 2005]. Theorem 8 may suggest that traders might
think about incorporating Pearson skewness in their decision making process
for portfolio selection.

For further research, the question arises whether one can show the mismatch
of preference structures based on skewness and those based on risk for general
(i.e. all) monetary risk measures. Possibly, there are classes of risk measures that
match to skewness while other do not. Other measures of skewness could also be
interesting, just like assumptions on distributions (e.g., three-point distributions
or absolutely continuous ones) or parameters. These points are particularly
critical when observing the mismatches of preferences based on different risk
indicators as shown in this work.

Acknowledgements

The author thanks Melanie Birke, Bernhard Herz, and Lars Grüne (all with
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