URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-6149-4
Titelangaben
Ding, Chenhui ; Breunig, Marion ; Timm, Jana ; Marschall, Roland ; Senker, Jürgen ; Agarwal, Seema:
Flexible, Mechanically Stable, Porous Self-Standing Microfiber Network Membranes of Covalent Organic Frameworks : Preparation Method and Characterization.
In: Advanced Functional Materials.
Bd. 31
(2021)
Heft 49
.
- No. 2106507.
ISSN 1616-3028
DOI der Verlagsversion: https://doi.org/10.1002/adfm.202106507
Volltext
|
|||||||||
Download (1MB)
|
Abstract
Covalent organic frameworks (COFs) show advantageous characteristics, such as an ordered pore structure and a large surface area for gas storage and separation, energy storage, catalysis, and molecular separation. However, COFs usually exist as difficult-to-process powders, and preparing continuous, robust, flexible, foldable, and rollable COF membranes is still a challenge. Herein, such COF membranes with fiber morphology for the first time prepared via a newly introduced template-assisted framework process are reported. This method uses electrospun porous polymer membranes as a sacrificial large dimension template for making self-standing COF membranes. The porous COF fiber membranes, besides having high crystallinity, also show a large surface area (1153 m(2) g(-1)), good mechanical stability, excellent thermal stability, and flexibility. This study opens up the possibility of preparation of large dimension COF membranes and their derivatives in a simple way and hence shows promise in technical applications in separation, catalysis, and energy in the future.