Titelangaben
Kiermaier, Michael ; Kurz, Sascha:
On the lengths of divisible codes.
Bayreuth
,
2019
. - 17 S.
Volltext
|
|||||||||
Download (205kB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Integer Linear Programming Models for Subspace Codes and Finite Geometry Ohne Angabe |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
In this article, the effective lengths of all q^r-divisible linear codes over GF(q) with a non-negative integer r are determined. For that purpose, the S_q(r)-adic expansion of an integer n is introduced. It is shown that there exists a q^r-divisible GF(q)-linear code of effective length n if and only if the leading coefficient of the S_q(r)-adic expansion of n is non-negative. Furthermore, the maximum weight of a q^r-divisible code of effective length n is at most the cross-sum of the S_q(r)-adic expansion of n. This result has applications in Galois geometries. A recent theorem of Nastase and Sissokho on the maximum sizes of partial spreads follows as a corollary. Furthermore, we get an improvement of the Johnson bound for constant dimension subspace codes.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
- On the lengths of divisible codes. (deposited 03 Apr 2019 12:22) [Aktuelle Anzeige]