Titelangaben
Buratti, Marco ; Kiermaier, Michael ; Kurz, Sascha ; Nakić, Anamari ; Wassermann, Alfred:
q-analogs of group divisible designs.
Bayreuth
,
2019
. - 18 S.
Dies ist die aktuelle Version des Eintrags.
Volltext
|
|||||||||
Download (412kB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Ganzzahlige Optimierungsmodelle für Subspace Codes und endliche Geometrie Ohne Angabe |
---|---|
Projektfinanzierung: |
Deutsche Forschungsgemeinschaft |
Abstract
A well known class of objects in combinatorial design theory are group divisible designs.Here, we introduce the q-analogs of group divisible designs. It turns out that there are interesting connections to scattered subspaces, q-Steiner systems, design packings and q^r-divisible projective sets. We give necessary conditions for the existence of q-analogs of group divisible designs, construct an infinite series of examples, and provide further existence results with the help of a computer search. One example is a (6,3,2,2)₂ group divisible design over GF(2) which is a design packing consisting of 180 blocks that such every 2-dimensional subspace in GF(2)⁶ is covered at most twice.
Weitere Angaben
Zu diesem Eintrag verfügbare Versionen
-
q-analogs of group divisible designs. (deposited 04 Mai 2018 06:21)
- q-analogs of group divisible designs. (deposited 12 Mrz 2019 15:34) [Aktuelle Anzeige]