Titelangaben
    
  Heinz, Stefan ; Rambau, Jörg ; Tuchscherer, Andreas:
Local Approximation of Discounted Markov Decision Problems by Mathematical Programming Methods.
  
    
    
    
    
    
    
    
     Bayreuth
    
    
    
    , 
    2011
    
    
    
    
     
    
    
    
     
     
  
  
Volltext
| ![[thumbnail of Policy_LocalEvaluation_Foundations.pdf]](https://epub.uni-bayreuth.de/style/images/fileicons/application_pdf.png) | 
 | ||||||||
| Download (338kB) | 
Abstract
We develop a method to approximate the value vector of discounted Markov decision problems (MDP) with guaranteed error bounds. It is based on the linear programming characterization of the optimal expected cost. The new idea is to use column generation to dynamically generate only such states that are most relevant for the bounds by incorporating the reduced cost information. The number of states that is sufficient in general and necessary in the worst case to prove such bounds is independent of the cardinality of the state space. Still, in many instances, the column generation algorithm can prove bounds using much fewer states. In this paper, we explain the foundations of the method. Moreover, the method is used to improve the well-known nearest-neighbor policy for the elevator control problem.
Weitere Angaben
| Publikationsform: | Preprint, Postprint | 
|---|---|
| Zusätzliche Informationen (öffentlich sichtbar): | msc: 90C05; msc: 90C06; msc: 90C40 | 
| Keywords: | Lineare Optimierung; Diskrete Optimierung; Dynamische Optimierung; Markov Decision Problem; Linear Programming; Column Generation; Performance Guarantees | 
| Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 510 Mathematik | 
| Institutionen der Universität: | Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut Fakultäten Fakultäten > Fakultät für Mathematik, Physik und Informatik | 
| Sprache: | Englisch | 
| Titel an der UBT entstanden: | Ja | 
| URN: | urn:nbn:de:bvb:703-opus-8615 | 
| Eingestellt am: | 25 Apr 2014 08:32 | 
| Letzte Änderung: | 28 Mrz 2019 10:10 | 
| URI: | https://epub.uni-bayreuth.de/id/eprint/345 | 
 
        
 im Publikationsserver
 im Publikationsserver bei Google Scholar
 bei Google Scholar Download-Statistik
 Download-Statistik