
LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION
PROBLEMS BY MATHEMATICAL PROGRAMMING METHODS

STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

ABSTRACT. We develop a method to approximate the value vector of discounted Markov
decision problems (MDP) with guaranteed error bounds. It is based on the linear pro-
gramming characterization of the optimal expected cost. The new idea is to use column
generation to dynamically generate only such states that are most relevant for the bounds by
incorporating the reduced cost information. The number of states that is sufficient in general
and necessary in the worst case to prove such bounds is independent of the cardinality of
the state space. Still, in many instances, the column generation algorithm can prove bounds
using much fewer states. In this paper, we explain the foundations of the method. Moreover,
the method is used to improve the well-known nearest-neighbor policy for the elevator
control problem.

1. INTRODUCTION

For a number of Markov Decision Problems (MDP) coming from interesting dynamical
optimization problems a classical computation of optimal policies is prevented by the curses
of dimensionality.

Powell [Pow07] introduces the three curses of dimensionality that give rise to these
intractable sizes. The first curse is as follows. The number of states in a Markov Decision
Problem (details below) grows exponentially with the number of state parameters, where
the base is the number of different values that a state parameter can take. A similar behavior
appears often for the set of feasible actions at a state and the set of possible states the system
can move due to using an action at some state. We will refer to these as the second and third
curse of dimensionality, respectively.

In this paper we introduce a technique to overcome the first curse in some interesting
cases. More specifically, we introduce a column-generation algorithm that computes in
selected states lower and upper bounds for the expected cost for a prescribed policy, for an
optimal policy, or for an action (assumed that in other states we decide optimally). Selected
states might be such states in which we suspect that a given widely used policy performs
badly. Or states in which we suspect that one policy acts better than another, in expectation.

Our algorithm employs the linear programming characterization of optimal policies in
discounted MDPs. It starts with a small part of the state space and adds states driven by
the reduced-cost criterion from linear programming. The reduced cost of state variables is
the additional information that comes for free in the linear programming setting. Our tool
exploits this extra-information.

1.1. Related Work. Various propositions exist how the curses of dimensionality can be
by-passed via approximations. We know of no method that can provide us with proven
bounds on the gap between a computed policy and an optimal policy when the state space is
too large to be handled in total. Moreover, automatically computed policies often lack an
understandable structure, and one is interested how good a policy is that can be formulated
as a logical decision rule. A prominent example is the common use of security stock policies
in inventory control, even in cases where such policies are known to be suboptimal.

Key words and phrases. Markov Decision Problem, Linear Programming, Column Generation, Performance
Guarantees.

1

2 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

In order to deal with the three curses of dimensionality arising in discounted and other
MDPs, several approaches have been studied in the literature. A broad field of methods
targeting large-scale MDPs (and generalizations) where exact methods become infeasible is
approximate dynamic programming [Pow07, SB98, BT96], which evolved in the computer
science community under the name reinforcement learning. Contrary to the classical
computational methods described above, an advantage of many techniques in this area is
that an explicit model of the environment, i. e., a precise specification of the MDP, is often
not required. Instead, a simulator of the system can be employed. Similar to simulation,
there is virtually no limit on the complexity of the state and transition structure. We refer to
the books [Pow07, SB98, BT96] for details concerning approximate dynamic programming.

The main disadvantage we see in approximate dynamic programming is that very few
methods provide performance guarantees, and those that do, e. g., [dFV03], only give worst-
case and thus typically weak bounds. Therefore, the need for tools providing performance
guarantees for policies is still there. In fact, policies stemming from approximate dynamic
pogramming could very well be analyzed by our method to find bounds on their expected
performance.

The approach described in the literature that yields results closest to ours is a sparse
sampling algorithm proposed by Kearns et al. [KMN99]. The authors also give theoretical
bounds on the necessary size of a subset of the state space that is needed by their approach
in order to obtain an ε-approximation, see Remark 3.20 on Page 16. However, for the
applications we aim at, their bounds are substantially weaker than ours.

Other approaches to locally explore the state space have been proposed by Dean et al.
[DKKN93] and Barto et al. [BBS95]. The former employs policy iteration with a concept
of locality similar to ours. This way, their method comes closest to our approach concerning
the algorithm used. However, the method does not provide any approximation guarantees.

1.2. Our contribution. In this paper, based on results from [Tuc10], we suggest a mea-
surement tool that approximates the expected total discounted cost of a given policy starting
in a given state, usually called initial state, relative to an unknown optimal policy (or another
given policy) up to a prescribed error. Because this tool needs only a small part (depending
on the discount factor) of the state space for its conclusions, it works in many cases where
the size of the state space renders classical methods to compute the cost of an optimal policy
infeasible. Since this cost criterion is the only one covered in this work, we call the expected
total discounted cost of a policy simply the cost of a policy from now on.

Our tool can in many instances

• find out whether in a given state a policy produces a cost of no more than (1+ ε)
times the cost of an unknown optimal policy;
• find out whether in a given state a policy produces a cost of at least (1+ ε) times

the cost of an unknown optimal policy;
• prove that in a given state, one policy has a smaller cost than another one;
• prove that a policy can not be optimal;
• prove that a single action can not be optimal in a given state;
• use that knowledge to improve given policies in special situations, i.e., states with

certain properties.

The results that can be obtained for concrete policies depend on the parameters and on the
specific instances. By applying our tool to the elevator control problem, we find out that
the nearest-neighbor policy NN is better than many other policies for elevator instances
of online dial a ride problems with the goal to minimize average waiting times, but not
optimal. This adds theoretical learnings to the simulation knowledge from [GHKR99].
Non-optimality is already implied by the property that NN never moves the elevator in an
empty system. By evaluating this single action in the empty system state with our tool, we
can guarantee that all policies that do not move in the empty system are suboptimal. We

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 3

present a new policy NNPARK- f that positions the elevator optimally when no request is in
the system. In a similar fashion, we improve NN to a better policy NNMAXPARK- f when
the goal is to minimize the maximal waiting time among all requests. And for this objective,
we can show with our tool that NN is one of the weakest policies.

All results reflect well our observations in simulations. This is no coincidence because
we give bounds on expected costs, and, because of the law of large numbers, the same
bounds should emerge in simulations with high probability.

1.3. Outline of the Paper. The paper is organized as follows: In Section 2 we phrase
our mathematical goal more formally. Section 3 introduces the theoretical foundations
of our method via induced MDPs. Our method itself is described in detail in Section 4.
In Section 5, we present how the method can be applied to a benchmark application, an
elementary elevator control problem. For this application, we were, e.g., able to design
taylor-made improvements for the nearest-neighbor policy on the basis of the analysis with
our tool. Simulation studies on larger systems have meanwhile shown that the key-learnings
of our short-term dominated analysis are also valid for long-term experiments.

2. FORMAL PROBLEM STATEMENT

We briefly review Markov Decision Problems (MDP) in order to settle on the notation.
A Markov decision process describes a discrete-time stochastic system of the following
type. At each point in time the system is situated in some specific state. Each state defines a
non-empty set of actions that represents the different possibilities to control or affect the
process. Applying a particular action moves the system into another state according to
a given probability distribution. Each state transition comes along with an immediately
incurred cost.

More formally: A Markov decision process is a tuple M = (S,A, p,c), where the compo-
nents are defined as follows:

• S is a finite set of states.
• A is a mapping specifying for each state i ∈ S a non-empty and finite set A(i) of

possible actions at state i.
• For all states i, j ∈ S, the mapping pi j : A(i)→ [0,1] gives the transition probability

pi j(a) that the system moves from state i to state j when using action a ∈A(i). For
each state i ∈ S and each action a ∈ A(i), we have ∑ j∈S pi j(a) = 1.
• For all i ∈ S, the mapping ci : A(i)×S→ R+ specifies the stage cost ci(a, j) when

action a ∈ A(i) is chosen and the system moves to state j ∈ S. The expected stage
cost of using action a∈A(i) at state i∈ S is denoted by ci(a) := ∑ j∈S pi j(a)ci(a, j).

A policy for M is a mapping π : S→ A(S). It is feasible if π(i) ∈ A(i). Let PM denote the
set of all feasible policies for M.

Note that the state space S is assumed to be finite. In contrast to the classical compu-
tational methods for the objective criterion of minimizing the total expected discounted
cost, however, the approximation method proposed in this paper can cope with an infinite
number of states. We will consider one Markov decision process with infinite state space in
Section 5.

For each t ∈ N, let the random variables Xt and Yt denote the current state and the
action used at stage t. Moreover, for all states i, j ∈ S and each action a ∈ A(j), let
Piπ [Xt = j,Yt = a] denote the probability that at stage t the state is j and the action is a,
given that policy π is used and the initial state is i. The expectation operator w. r. t. this
probability measure is denoted by Eiπ .

4 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

Let M = (S,A, p,c) be a Markov decision process and let α ∈ [0,1). The total expected
α-discounted cost of a policy π for M for an initial state i ∈ S is defined by

vα
i (π) :=

∞

∑
t=0

Eiπ [α
t · cXt (Yt)] (1)

=
∞

∑
t=0

α
t
∑
j∈S

∑
a∈A(j)

Piπ [Xt = j,Yt = a] · c j(a).

Let V α : PM → RS be the value vector function defined for each policy π ∈ PM by the value
vector vα(π) with elements vα

i (π) for each i ∈ S as given above. The combination (M,V α)
of M and the value vector function V α is called an α-discounted cost Markov Decision
Problem, or short discounted MDP, and is denoted for short as (M,α). We denote with vα

the optimal value vector which is vα
i = minπ∈PM vα

i (π) for all i ∈ S. A policy π∗ is optimal
for (M,α) if vα

i (π
∗) = vα

Originally the goal is to find an optimal policy. Our goal is the following: Given an
α-discounted-cost MDP, a policy, and an ε > 0, find ε-exact performance guarantees for
single start states, maybe relative to an unknown optimal policy or relative to some other
policy. That is, more formally:

Problem 2.1. Given an α-discounted-cost MDP, a policy π , a state i0 with vα
i0 > 0, and an

ε > 0, find in state i0 a lower bound vi0 for the optimal cost and an upper bound vi0(π) for
the cost of π such that

vi0(π)− vi0
vi0

≤ ε. (Relative Performance Guarantee)

Alternatively, find in state i0 a lower bound vi0(π) for the cost of π and an upper bound
vi0 for the optimal cost such that

vi0(π)> vi0 . (Non-Optimality Certificate)

In this paper, we present an algorithm that can provide such bounds and related data
without necessarily touching all states. States used for the computation are selected dynami-
cally, dependent on the individual data of the instance. The algorithm detects automatically
when the desired guarantee can be given and stops with a proven result.

3. INDUCED MDPS AND BOUNDS

In this section, we derive from a given MDP new MDPs whose value functions
• can be computed easier,
• yield bounds for the value function of the original MDP.

Let cmax := maxi∈S,a∈A(i) ci(a) be the maximum stage cost. Obviously, we have:∣∣∣∣∣ ∞

∑
t=0

α
t · cXt (Yt)

∣∣∣∣∣≤ ∞

∑
t=0

α
t · cmax =

cmax

1−α
.

For discounted MDPs we have the nice property that there always exists an optimal de-
terministic policy. Recall that this implies optimality for each possible initial state. The
following result can be found in the book of Bertsekas [Ber01].

Theorem 3.1 (See, e.g., [Ber01, Volume 1, Chapter 7.3]). Let (M,α) be an α-discounted
MDP with α ∈ [0,1). Then, we have the following:

(1) Let π be a deterministic policy for M. Then the value vector vα(π) equals the
unique solution v of the system of linear equations:

vi = ci(π(i))+α ∑
j∈S

pi j(π(i))v j, i ∈ S. (2)

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 5

(2) The optimal value vector vα equals the unique solution v of the system of equations:

vi = min
a∈A(i)

{
ci(a)+α ∑

j∈S
pi j(a)v j

}
, i ∈ S. (3)

(3) There exists an optimal deterministic policy for M, and a deterministic policy π is
optimal if and only if:

π(i) ∈ argmin
a∈A(i)

{
ci(a)+α ∑

j∈S
pi j(a)vα

j (π)

}
, i ∈ S. (4)

The practical impact of Theorem 3.1 can be summarized as follows. The value vector of
a deterministic policy can be computed by solving a system of linear equations. Moreover,
the optimal value vector equals the unique solution of a system of equations incorporating
a minimum term. One typically refers to the system of Equations (3) as the optimality
equations or Bellman equations. Once the optimal value vector vα is at hand, an optimal
deterministic policy can easily be determined by computing ci(a)+α ∑ j∈S pi j(a)vα

j for
each state i ∈ S and each action a ∈ A(i). Basically, all methods for computing an optimal
deterministic policy first provide the optimal value vector, and then use Formula (4) to
obtain the policy itself. Thus, the remaining task is to determine vα .

Because of the reasons mentioned above, we will particularly deal with deterministic
policies in the sequel. Moreover, the following definition of optimal actions will be used.

Definition 3.2 (Optimal actions). Let (M,α) be an discounted MDP with α ∈ [0,1). A pos-
sible action a ∈ A(i) at a state i ∈ S is called optimal if there exists an optimal deterministic
policy π for M such that π(i) = a.

The classical methods for computing the optimal value vector vα of a discounted MDP
include value iteration, policy iteration, and linear programming. For details and possible
variants and extensions of the methods, see [Put05, chapter 6], [FS02, chapter 2.3], or
[Ber01, volume 2, chapter 1.3].

The central theorem concerning the linear programming method for computing the
optimal value vector of a discounted MDP reads as follows.

Theorem 3.3 (See, e.g., [Ber01, Volume 2, Section 1.3.4]). The optimal value vector vα ∈
RS of a discounted MDP (M,α) equals the unique optimal solution v of the following linear
program:

max ∑
i∈S

vi (PΣ)

subject to vi−α ∑
j∈S

pi j(a)v j ≤ ci(a) ∀i ∈ S ∀a ∈ A(i)

vi ∈ R ∀i ∈ S.

Therefore, one can obtain the optimal value vector by solving the linear program (PΣ).
This linear programming formulation was first proposed by d’Epenoux [d’E63] and has
been the starting point for several approaches, e. g., see [SS85, dFV03, dFV04].

In the sequel we will deal with many linear programs similar to (PΣ). To emphasize their
specific distinctions, we will use a matrix-vector notation. Let (M,α) be an discounted
MDP. Contrary to the usual Cartesian product, we define S×A for any subset of states S⊆ S
as:

S×A := {(i,a) | i ∈ S,a ∈ A(i)}.
That is, S×A equals the set of all pairs of states in S and possible actions. Next we define
the matrix Q ∈ R(S×A)×S for each (i,a) ∈ S×A and each state j ∈ S by:

Q(i,a), j =

{
1−α pi j(a), if i = j,
−α pi j(a), if i 6= j.

6 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

Moreover, we make sloppy use of the symbol c and also denote by c ∈ RS×A the vector of
the expected stage costs, i. e., the components of c are given by:

cia = ci(a)

for each (i,a) ∈ S×A. Now the linear program (PΣ) can be written as:

max 1
tv (PΣ)

subject to Qv≤ c

v ∈ RS,

where 1t = (1,1, . . . ,1) denotes the all-ones vector.
The approximation algorithm to be proposed is motivated by the fact that for the huge

state spaces arising in MDPs modeling practical problems, it is currently impossible to solve
the associated linear program (PΣ) in reasonable time. Our idea is to evaluate the value
vector at one particular state i0 ∈ S alone. Since we are only interested in vα

i0 , we can restrict
the objective function of (PΣ) by maximizing the value vi0 only:

max vi0 (Pi0)
subject to Qv≤ c

v ∈ RS

In contrast to (PΣ), there does not exist a unique solution for the linear program (Pi0) in
general for the following reasons. On the one hand, there may be states in S that cannot be
reached from i0. On the other hand, there are typically some actions that are not optimal.
Such a state j ∈ S, that is either not reached at all or only reached via non-optimal actions,
is not required to have a maximized value v j in order to maximize vi0 , i. e., the objective
function of (Pi0). The value v j may even be negative in an optimal solution.

Similar to the original linear programming formulation, solving the linear program (Pi0)
is still infeasible considering the huge state spaces for practical applications. In order to
obtain a linear program that is tractable independently of the size of the state space S,
we reduce the set of variables and constraints in the linear program (Pi0) by taking into
account only a restricted state space. Given a subset of states S ⊆ S with i0 ∈ S, consider
the submatrix QS ∈ R(S×A)×S of the constraint matrix Q consisting of all rows (i,a) with
i ∈ S and all columns j with j ∈ S. Moreover, let cS ∈ RS×A be the subvector of vector c
consisting of all the components with indices (i,a) satisfying i ∈ S. Now let us look at the
following linear program:

max vi0 (Li0
S)

subject to QSv≤ cS

v ∈ RS.

Sometimes we will also be interested in an optimal solution of this reduced linear program
where the objective function is ∑ j∈S v j:

max 1
tv (LΣ

S)

subject to QSv≤ cS

v ∈ RS,

where again 1t = (1,1, . . . ,1) denotes the all-ones vector.
Any feasible solution v ∈ RS of the linear program (LΣ

S) and (Li0
S) can be extended to

a feasible solution vext ∈ RS of the linear program (PΣ) and (Pi0) with the same objective

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 7

value, respectively, where

vext
i =

{
vi, if i ∈ S,
0, if i ∈ S\S.

(5)

The optimal value vector vα is the componentwise largest vector satisfying the constraints
of (PΣ) and (Pi0). Thus, each feasible solution of the linear programs (LΣ

S) and (Li0
S) provides

a lower bound on the optimal value vector vα at all states in S.

Lemma 3.4. Given a discounted MDP (M,α), a state i0 ∈ S, and a subset of states S⊆ S
with i0 ∈ S, let v be any feasible solution of the linear programs (LΣ

S) and (Li0
S), respectively.

Then, for each state i ∈ S, the component vα
i of the optimal value vector vα is at least vi,

i. e.,
vi ≤ vα

i for each i ∈ S.

Particularly, the optimal value of the linear program (Li0
S) is a lower bound on vα

i0 .

Although lower bounds on the optimal value vector are obtained for all states in the subset
of states S, the approximation method proposed in this paper mainly aims at computing
bounds on the component vα

i0 . The lower bounds on vα
i0 are obtained as the optimal values

of the linear programs (Li0
S) for some S⊆ S with i0 ∈ S. These values can be obtained from

the optimal solution of (LΣ
S), too.

In the following we show that each subset S⊆ S defines again an MDP. The idea is to
add one additional state that models all transitions to states that are not included in S.

Definition 3.5 (Lower-bound induced MDP). Let M = (S,A, p,c) be an MDP and let S⊆ S
be any subset of states. Then, the (lower-bound) S-induced MDP M(S) = (S′,A′, p′,c′) is
defined as follows:

• If for all states i ∈ S and all actions a ∈A(i) we have ∑ j∈S pi j(a) = 1, then the state
space of M(S) equals S′ = S. The mappings A′, p′, and c′ are the corresponding
restrictions of A, p, and c to the possibly reduced state space S′.
• Otherwise, the state space of the induced MDP equals S′ = S∪{iend} with the

following properties of state iend. For each state i ∈ S and each action a ∈A(i) with
∑ j∈S pi j(a)< 1, we set:

p′iiend
(a) := ∑

j∈S\S
pi j(a) = 1−∑

j∈S
pi j(a)

and
c′i(a, iend) :=

1
p′iiend

(a) ∑
j∈S\S

pi j(a)ci(a, j).

That is, c′i(a, iend) equals the expected stage cost for using action a at state i, given
that the successor state is not contained in S.

Furthermore, there is only one feasible action at the state iend, i. e., we have
A′(iend) = {aend}. Using action aend the system always stays in state iend, i. e.,
p′iendiend

(aend) = 1, with a stage cost of c′iend
(a, iend) = 0. Except for the special

cases described above, A′, p′, and c′ are again the restrictions of A, p, and c
w. r. t. S′.

In the literature a state with the properties of iend is often called absorbing terminal
state. A picture illustrating the Markov decision process of the induced MDP M(S) for
some proper subset of states S⊂ S is given in Figure 1. Induced MDPs have the following
properties.

Theorem 3.6. Given an MDP M = (S,A, p,c), a state i0 ∈ S, and a subset of states S⊆ S
with i0 ∈ S, we have for the lower-bound S-induced MDP M(S) = (S′,A′, p′,c′):

(1) M(S) = M if and only if S = S.

8 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

S

j1

i

j2

a
ci(a)

pi j1(a)

pi j2(a)

iend
∑ j∈S\S pi j(a)

aend

0

1

FIGURE 1. Illustration of the Markov decision process of the induced
MDP M(S) for some S⊂ S. Transitions within the reduced state space S
are as in the original MDP M; transitions from S to S\S in M are mod-
eled via aggregated transitions to the absorbing terminal state iend. The
expected stage costs do not change, cf. Theorem 3.6.

(2) The expected stage cost at state i ∈ S for using action a ∈ A′(i) = A(i) is the same
for both MDPs M and M(S), i. e., c′i(a) = ci(a).

(3) The optimal value vector v of M(S) for an α ∈ [0,1) is given by the unique optimal
solution of the linear program (LΣ

S) and viend = 0.

Proof. The first property is trivial. To prove the second one, let i ∈ S and a ∈ A(i). If
all possible successor states reached by using action a at state i are contained in S, i. e.,
∑ j∈S pi j(a) = 1, the statement is clear. Assume ∑ j∈S pi j(a) < 1. Since c′i(a, j) = ci(a, j)
for each j ∈ S, we obtain by the definition of c′i(a, iend):

ci(a) = ∑
j∈S

pi j(a)ci(a, j)

= ∑
j∈S

pi j(a)ci(a, j)+ ∑
j∈S\S

pi j(a)ci(a, j)

= ∑
j∈S

pi j(a)c′i(a, j)+ p′iiend
(a)c′i(a, iend)

= c′i(a).

Now the third property follows from the general linear programming result (see Theo-
rem 3.3) and the observation that the optimal value vector of the MDP M(S) is always zero
at state iend. �

Induced MDPs will play an important role in various parts of this paper.

Similarly to the reduced linear program (Li0
S) providing a lower bound for the value vα

i0
of an MDP, we propose the following approach to establish a linear program to obtain an
upper bound on vα

i0 . Since there is only a finite number of states and actions, the maximum
expected stage cost is attained by cmax := maxi∈S,a∈A(i) ci(a). This implies an upper bound
on the value vector of any policy: from (1) we easily get vα

i (π)≤ cmax/(1−α), for each
policy π and each state i ∈ S.

Now given a particular state i0 ∈ S and a subset of states S ⊆ S such that i0 ∈ S, we
compute an upper bound on the value vα

i0 as follows. Instead of just dropping the optimal
value vector outside S, i. e., setting it to zero, we can set the corresponding variables to

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 9

the general upper bound vα
max := cmax/(1−α). Therefore, the reduced linear program

providing an upper bound reads:

max vi0 (Ui0
S)

subject to QSv≤ cS + rS

v ∈ RS,

where the vector rS ∈ RS×A is defined by:

rS
ia = α · vα

max ∑
j∈S\S

pi j(a), (6)

for each (i,a) ∈ S×A. Obviously this linear problem is feasible and bounded.
Similar to the reduced linear program (Li0

S) for computing the lower bound, also (Ui0
S)

provides the optimal value vector at state i0 for some adapted MDP. Here, the MDP is a
slight modification of the lower-bound induced MDP introduced in Definition 3.5: the stage
cost for the only transition at state iend now equals the maximum expected stage cost cmax
instead of the minimum stage cost 0.

Definition 3.7 (Upper-bound induced MDP). Let M = (S,A, p,c) be an MDP and let S⊆ S
be any subset of states. Then, the upper-bound S-induced MDP M′(S) is defined as the
modified lower-bound S-induced MDP, where the stage cost at state iend for using action
aend equals:

c′iend
(aend, iend) = cmax := max

i∈S,a∈A(i)
ci(a).

Notice that the optimal value vector vα restricted to the state subset S gives a feasible
solution for the linear program (Ui0

S). Therefore, the optimal value of (Ui0
S) is indeed an

upper bound on vα
i0 .

Lemma 3.8. Given a discounted MDP (M,α), a state i0 ∈ S, and a subset of states S⊆ S
with i0 ∈ S, the optimal value of the linear program (Ui0

S) is an upper bound on vα
i0 .

Remark 3.9. Similar to the lower bound case, one can also show the following. Given a
discounted MDP (M,α), a state i0 ∈ S, and a subset of states S ⊆ S with i0 ∈ S, let v be
the unique optimal solution of the linear program (Ui0

S) with objective function max∑ j∈S v j.
Then, we have for the optimal value vector v of the upper-bound S-induced MDP M′(S):

v =

{
vi, if i ∈ S,
vα

max, if i = iend.

Particularly, the component vi0 equals the optimal value of (Ui0
S).

Furthermore, the solution v provides an upper bound on each component vα
i of the

optimal value vector of the original MDP M for i ∈ S, i. e., we have vα
i ≤ vi.

The next results shows that by solving the linear program (Ui0
S) one can also construct

a policy for the original MDP whose value vector at state i0 is bounded from above by
the optimal value of (Ui0

S). The policy is obtained by extending an optimal policy for the
upper-bound S-induced MDP M′(S) arbitrarily w. r. t. the states in S\S.

Theorem 3.10. Consider a discounted MDP (M,α), a state i0 ∈ S, a subset of states S⊆ S
with i0 ∈ S, and an optimal solution vi0 for the linear program (Ui0

S). For each state i ∈ S,
let ai ∈ A(i) be any action that satisfies the corresponding inequality in (Ui0

S) with equality.
Then, any policy π for M with π(i) = ai for each i ∈ S satisfies:

vi0 ≤ vα
i0 ≤ vα

i0(π)≤ vi0 ,

where vi0 is the optimal value of (Li0
S).

10 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

Proof. The first inequality holds true due to Lemma 3.4 and the second one is clear anyway.
Since the value vector of policy π equals the solution of the system of linear equations (2)

by Theorem 3.1, it can be shown that the value vα
i0(π) can also be computed as the optimal

value of the following linear program:

max vi0

subject to vi−α ∑
j∈S

pi j(π(i))v j ≤ ci(π(i)) ∀i ∈ S

vi ∈ R ∀i ∈ S.
Next this linear program is modified as follows. Firstly, constraints vi ≤ vα

max for each
i ∈ S\S are added to the linear program. Since these constraints are redundant, this does not
change the optimal value. Secondly, all original constraints for states in S\S are removed.
Thus, we obtain the following relaxation of the linear program above:

max vi0

subject to vi−α ∑
j∈S

pi j(π(i))v j ≤ ci(π(i)) ∀i ∈ S

vi ≤ vα
max ∀i ∈ S

vi ∈ R ∀i ∈ S.

Note that this relaxation is equivalent to the linear program (Ui0
S) restricted to the constraints

defined by π , which itself has by definition of π the same objective value as (Ui0
S), i. e., vi0 .

Since we constructed a relaxation of the linear program for computing vα
i0(π), we obtain

vα
i0(π)≤ vi0 . �

Furthermore, there is a second way to obtain an upper bound on the component vα
i0 of the

optimal value vector by using directly the unique optimal solution of the linear program (LΣ
S)

for computing the lower bound. The construction of this upper bound on vα
i0 is as follows.

For a given subset of states S⊆ S and a particular state i0 ∈ S, let π be an optimal policy for
the S-induced MDP M(S) as obtained from the optimal solution of the linear program (LΣ

S).
Let QS,π ∈ RS×S be the submatrix of QS consisting of all the rows (i,a) with a = π(i), and
let cS,π ,rS,π ∈ RS be corresponding subvectors of cS and rS, respectively, i. e.,

cS,π
iπ(i) = ci(π(i)) and rS,π

iπ(i) = α · vα
max ∑

j∈S\S
pi j(π(i)),

for each state i ∈ S. Consider the following system of linear equations:

QS,π v = cS,π + rS,π . (7)

Note that the matrix QS,π is strictly row diagonally dominant and therefore nonsingular.
Thus, the system (7) has a unique solution vπ ∈ RS. The next result shows that the value vπ

i0
is an upper bound on vα

i0 , too.

Theorem 3.11. Given a discounted MDP (M,α), a state i0 ∈ S, a subset of states S ⊆ S
with i0 ∈ S, and an optimal policy π for the S-induced MDP M(S), let vπ be the unique
solution of system (7), and let vi0 be the optimal value of the linear program (Ui0

S). Then,

vα
i0 ≤ vi0 ≤ vπ

i0 .

That is, vπ
i0 is an upper bound on the optimal value vector at state i0, but a weaker one

than vi0 . Moreover, the value vπ
i0 equals the optimal value of the following linear program:

max vi0 (Ui0
S,π)

subject to QS,π v≤ cS,π + rS,π

v ∈ RS.

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 11

i0

a0

0

a1
0

i1
1

a2
0

i2
1

in

an+1

0

iend

1 1

aend

01

FIGURE 2. Markov decision process of an induced MDP M(S) that
yields different upper bounds vπ0 and vπ1 for the optimal policies π0 and
π1 for M(S) with π0(i0) = a0 and π1(i0) = a1.

Proof. The value vπ
i0 equals the optimal value of the linear program (Ui0

S,π). Since (Ui0
S,π) is

a relaxation of the linear program (Ui0
S), we have vi0 ≤ vπ

i0 . �

Thus, by computing an optimal solution of the linear program (LΣ
S), which also yields an

optimal policy π for the S-induced MDP M(S), and by solving the corresponding system of
linear equations (7) one can provide lower and upper bounds on vα

i0 .

Remark 3.12. The unique solution vπ ∈ RS of system (7) gives the value vector v of a
policy π for the upper-bound S-induced MDP M′(S):

v =

{
vπ

i , if i ∈ S,
vα

max, if i = iend.

Recall that (7) is computed for policies that are optimal for M(S). If such a policy π is
optimal for M′(S) as well, the two upper bounds on vα

i0 compared in Theorem 3.11 coincide,
i. e., we have vπ

i0 = vi0 .
Under the assumptions of Theorem 3.11 one can show, similar to Theorem 3.10, that each

policy π ′ for the original MDP M with π ′(i) = π(i) for each state i∈ S satisfies vα
i0(π

′)≤ vπ
i0 .

Obviously, several optimal policies may exist for an MDP in general. The following
example shows that the upper bound vπ

i0 obtained by solving system (7) really depends on
the chosen policy π . That is, different optimal policies may lead to different upper bounds.

Example 3.13. Let S = {i0, i1} and consider the deterministic S-induced MDP M(S) given
by the Markov decision process shown in Figure 2 for n = 1. We assume that the maximum
expected stage cost w. r. t. all states in S is positive, i. e., cmax = maxi∈S,a∈A(i) ci(a) > 0.
Since all stage costs for states in S equal 0, every policy for M(S) is optimal. Note that there
is only a choice to be made at state i0. Consider the policies π0 with π0(i0) = a0 and π1
with π1(i0) = a1. Then, the solutions vπ0 and vπ1 of the corresponding systems (7) satisfy:

vπ0
i0

= 0+αvα
max,

vπ0
i1

= 0+αvα
max,

and

vπ1
i0
−αvπ1

i1
= 0,

vπ1
i1

= 0+αvα
max,

12 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

where again vα
max = cmax/(1−α) equals the general upper bound for each component of

the value vector of any policy. Thus, we obtain:

vπ0
i0

= αvα
max and vπ1

i0
= α

2vα
max.

Obviously, the policy π1 provides a better upper bound than policy π0.
The example can easily be extended such that the ratio between the two upper bounds

becomes arbitrarily large. To this end, consider the S-induced MDP M(S) shown in Fig-
ure 2 for an arbitrary integer n ∈ N. There exists a sequence of states i1, . . . , in and ac-
tions a2, . . . ,an+1 with A(ik) = {ak+1} and pikik+1(ak+1) = 1 for k∈ {1, . . . ,n−1}. Moreover,
we have piniend(an+1) = 1. Again all stage costs equal zero. Then, the optimal policy π1

for M(S) with π1(i0) = a1 yields an upper bound of vπ1
i0

= αn+1vα
max, while we still have

vπ0
i0

= αvα
max for the other optimal policy π0 using action a0 at state i0. This results in a ratio

of vπ0
i0
/vπ1

i0
= 1/αn, which goes to infinity for n→ ∞ since α < 1.

Note that in the example the upper bound provided by policy π1 equals the bound vi0
obtained as the optimal value of the linear program (Ui0

S), i. e., vi0 = vπ1
i0

. In general, however,
the upper bound vi0 may be better than the bound vπ

i0 for each optimal policy π for M(S). In
other words, no optimal policy for M(S) is optimal for M′(S) as well.

Example 3.14. Consider again the example above for n = 1 except that we have a small
stage cost for action a1 of ci0(a1, i1) = ε , where 0 < ε < αcmax. On the one hand, the
policy π1 is no longer optimal for M(S), which leaves π0 being the only optimal policy. On
the other hand, the upper bound vi0 equals:

vi0 = min
{

αvα
max,ε +α

2vα
max
}
= ε +α

2vα
max,

since ε < αcmax. Therefore, we obtain:

vi0 = ε +α
2vα

max < αvα
max = vπ0

i0
,

which shows that the upper bound vi0 is predominant here.

Our approximation algorithm which we present in Section 4.1 is derived from the theory
of this section. It generally employs the construction of upper bounds via solving the linear
programs (Ui0

S) for subsets S⊆ S. However, it is also possible to incorporate the second type
of upper bounds, especially since these bounds are more or less computed by the algorithm
anyway.

Remark 3.15. The construction of lower and upper bounds for the component vα
i0 of the

optimal value vector can often be improved as follows. Let S⊂ S be some restricted state
space with i0 ∈ S. Recall that for computing the bounds on vα

i0 w. r. t. subset S our approach
assumes for each component vα

i of the optimal value vector with state i ∈ S \ S a lower
and upper bound of 0 and vα

max, respectively. Often, however, a better bound on individual
components of vα are known or can be determined.

It is easy to see that the upper bound constructions for vα
i0 described in this section remain

feasible if any available upper bounds vα
max(j)≥ vα

j for j ∈ S are used. That is, instead of
the vector rS ∈ RS defined by Equation (6), we apply the vector rub,S ∈ RS where:

rub,S
ia = α ∑

j∈S\S
pi j(a)vα

max(j),

for each (i,a) ∈ S×A. In doing so, both described ways to determine upper bounds on vα
i0

can be improved.
Similarly, for given lower bounds 0≤ vα

min(j)≤ vα
j for j ∈ S on the components of the

optimal value vector, a possibly improved lower bound on vα
i0 can be obtained as the optimal

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 13

value of the linear program:

max vi0

subject to QSv≤ cS + rlb,S

v ∈ RS,

where the vector rlb,S ∈ RS is defined by:

rlb,S
ia = α ∑

j∈S\S
pi j(a)vα

min(j),

for each (i,a) ∈ S×A.

By incorporating such improved bounds in our algorithm the run-times can often be
reduced significantly. We will make use of this technique in the computations in Section 5,
e. g., for the considered elevator control MDPs. For this application, it is crucial to employ
involved lower and upper bounds in order to obtain conclusive results at all.

In the following we present our structural approximation theorem which shows that
an ε-approximation of one component of the optimal value vector can be obtained by
taking into account only a small local part of the entire state space. We need the following
definition.

Definition 3.16 (r-neighborhood). For an MDP (S,A, p,c), a particular state i0 ∈ S, and a
number r ∈ N, the r–neighborhood S(i0,r) of i0 is the subset of states that can be reached
from i0 within at most r transitions. That is, S(i0,0) := {i0} and for r > 0 we define:

S(i0,r) := S(i0,r−1)∪
{

j ∈ S | ∃i ∈ S(i0,r−1)∃a ∈ A(i) : pi j(a)> 0
}
.

We will also call the set S(i0,r) neighborhood of i0 with radius r.

Note that the stage costs accounted in the total expected discounted cost decrease geo-
metrically. Thus, for a given approximation guarantee ε it is clear that the r-neighborhood
S(i0,r) of i0 for some radius r = r(ε) ∈ N will provide an ε-approximation for vα

i0 via the
associated linear programs. The following theorem provides a formula for the radius r
required for a given approximation guarantee (we already documented a weaker version of
this result in the preprint [HKP+06]).

Theorem 3.17. Let M = (S,A, p,c) be an MDP, α ∈ [0,1) a discount factor, and b,d ∈ N
such that:

• For each i ∈ S, the number of possible actions |A(i)| at state i is bounded by b ∈ N.
• For each i ∈ S and a ∈ A(i), the number of states j ∈ S with positive transition

probabilities pi j(a) is bounded by d ∈ N.

Let cmax := maxi∈S,a∈A(i) ci(a) and vα
max := cmax/(1−α). Then, for each state i0 ∈ S and

for each ε > 0, the subset of states S = S(i0,r)⊆ S with

r = max
{

0,
⌈

log
(

ε

vα
max

)
/ logα

⌉
−1
}

satisfies the following properties:

(i) |S| ≤max
{
(bd)r+1,r+1

}
, in particular, the number of states in S does not depend

on |S|.
(ii) For state i0, the unique optimal solution v of the linear program (LΣ

S) (or any optimal
solution v of (Li0

S), respectively) and the unique solution vπ of system (7) w. r. t. any
optimal policy π for the S-induced MDP M(S) satisfy:

vπ
i0 − vi0 ≤ ε.

14 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

In particular, vi0 and vπ
i0 themselves are ε-close lower and upper bounds on the optimal

value vector vα at state i0, i. e.,

0≤ vα
i0 − vi0 ≤ ε,

0≤ vπ
i0 − vα

i0 ≤ ε.

Proof. Let i0 ∈ S and ε > 0. Since the number of possible actions at each state and the
number of successor states for any action are bounded by b and d, respectively, Property (i)
follows directly from the construction of the set S = S(i0,r):

|S| ≤
r

∑
k=0

(bd)k =
(bd)r+1−1

bd−1
≤ (bd)r+1,

if bd ≥ 2. In the trivial case bd = 1 we obviously have |S|= r+1.
The proof of Property (ii) is as follows. Consider the extension vext ∈RS of the solution v

of the linear program (LΣ
S) as defined in Equation (5):

vext
i =

{
vi, if i ∈ S,
0, if i ∈ S\S.

Moreover, let π be an optimal policy for M(S) and construct an extension vext ∈ RS of the
solution vπ of system (7) w. r. t. policy π as follows:

vext
i =

{
vπ

i , if i ∈ S,
vα

max, if i ∈ S\S.

Note that vext is in general not a feasible solution of the linear program (PΣ).
By Theorem 3.6 the solution v of (LΣ

S) equals the optimal value vector of the MDP M(S).
Since π is optimal for M(S), Theorem 3.1 implies that the corresponding constraints in the
linear program (LΣ

S) are satisfied with equality by v, i. e.,

vi = ci(π(i))+α ∑
j∈S

pi j(π(i))v j ∀i ∈ S,

which implies for the extension vext:

vext
i = ci(π(i))+α ∑

j∈S
pi j(π(i))vext

j ∀i ∈ S. (8)

Note that in (8) we sum over the whole state space, which is feasible due to vext
j = 0 for

each j ∈ S\S.
On the other hand, since vπ satisfies the system of equations (7) we have the following

relation for the extension vext:

vext
i = ci(π(i))+α ∑

j∈S
pi j(π(i))vext

j ∀i ∈ S. (9)

From the Equations (8) and (9) we obtain:

vext
i − vext

i = α ∑
j∈S

pi j(π(i))(vext
j − vext

j) ∀i ∈ S. (10)

In the following, we show by reverse induction on k = r, . . . ,0 for each state i ∈ S(i0,k):

vext
i − vext

i ≤ α
r+1−kvα

max. (11)

Note that all i to which (11) refers are contained in S because of k ≤ r.
For k = r and for each state i ∈ S(i0,k), Inequality (11) follows from (10) due to vext

j ≤
vα

max and vext
j ≥ 0 for each j ∈ S:

vext
i − vext

i ≤ α ∑
j∈S

pi j(π(i))
(
vα

max−0
)

= αvα
max.

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 15

Here, the equality follows from the fact that ∑ j∈S pi j(π(i)) = 1 for each state i ∈ S.
Now assume that Inequality (11) holds for each state j ∈ S(i0,k) with 0 < k ≤ r. For

each i ∈ S(i0,k−1), we again apply Equality (10):

vext
i − vext

i = α ∑
j∈S

pi j(π(i))(vext
j − vext

j)

= α ∑
j∈S(i0,k)

pi j(π(i))(vext
j − vext

j),

where the second identity is due to the fact that each state j ∈ S with pi j(π(i)) > 0 is
contained in S(i0,k) since i ∈ S(i0,k−1). We can apply the induction hypothesis for each
state j ∈ S(i0,k):

vext
i − vext

i ≤ α ∑
j∈S(i0,k)

pi j(π(i))αr+1−kvα
max

= α
r+1−(k−1)vα

max,

which completes the inductive proof of (11).
For i = i0 and k = 0, Inequality (11) implies:

vπ
i0 − vi0 = vext

i0 − vext
i0 ≤ α

r+1vα
max.

Finally, we distinguish two cases to show Property (ii). If ε ≥ αvα
max, we have r = 0, and

thus vπ
i0−vi0 ≤αvα

max ≤ ε . Otherwise, if ε <αvα
max, it follows that log(ε/vα

max)< logα < 0
and r = dlog(ε/vα

max)/ logαe−1 which implies:

vπ
i0 − vi0 ≤ α

dlog(ε/vα
max)/ logαevα

max

≤ α
log(ε/vα

max)/ logα vα
max

= ε.

It remains to be proven that vi0 and vπ
i0 are ε-close lower and upper bounds for the

component vα
i0 . From Lemmas 3.4 and 3.8 it is already known that vα

i0 ≥ vi0 and vα
i0 ≤ vπ

i0 .
By these inequalities we obtain:

vπ
i0 − vα

i0 ≤ vπ
i0 − vi0 ≤ ε,

vα
i0 − vi0 ≤ vπ

i0 − vi0 ≤ ε.

�

We mention that Theorem 3.17 is still true in the case of an infinite state space S if there
exists a finite upper bound for the expected stage costs, i. e., supi∈S,a∈A(i) ci(a)< ∞. Since

the optimal value of the linear program (Ui0
S) is a stronger upper bound on vα

i0 than vπ
i0 (see

Theorem 3.11), we also have the following result.

Corollary 3.18. Under the same assumptions as used in Theorem 3.17, let vi0 be the optimal
value of the linear program (Ui0

S) for the subset of states S = S(i0,r). Then, we have:

vi0 − vi0 ≤ ε.

Particularly, vi0 is also an ε-close upper bound on vα
i0 , i. e., vi0 − vα

i0 ≤ ε .

Remark 3.19. The size of the restricted state space is optimal in some sense, as can be
seen from the example of a “tree like” MDP, in which every state has exactly b different
controls, that, with uniform transition probabilities, lead to exactly d “new states” (that can
be reached only via this control). In this case, one can show that S = S(i0,r) as above is the
smallest restricted state space to obtain the desired approximation. Of course, incorporating
additional parameters of the MDP might give better results in special cases.

16 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

Remark 3.20. Of all the approaches from the literature the random sampling algorithm of
Kearns et al. [KMN99] gives the results most comparable to Theorem 3.17. However, the
size of the restricted state space in our construction is significantly smaller than that for
random sampling. This algorithm samples states within the neighborhood of the considered
state i0 up to a radius rs with:

rs =

⌈
logx
logα

⌉
, where x :=

ε(1−α)3

4cmax
.

Obviously, this gives a considerably larger subset of states since rs is greater than the
radius r = dlog(ε(1−α)/cmax)/ logαe−1 used in Theorem 3.17. For instance, if cmax = 1,
α = 0.7, and ε = 0.1, the radius rs equals rs = 21, while the radius in our construction
equals r = 10.

However, the setting considered in [KMN99] is quite different as the authors assume
the maximum number of successor states d for an action to be very large or even infinite.
Indeed, the number of states sampled by their algorithm is independent of d. This way, their
approach deals with the third curse of dimensionality also, i. e., a huge number of possible
successors. They sample for each considered state in radius smaller than rs, at most

T = x−2
[

ln
(

1−α

x

)
+2r ln

(
x−2br ln

(
1−α

x

))]
consecutive states if T < d. Note that this restriction only makes a difference when d is
really large: even fairly simple situations imply huge values for T , e. g., if cmax = 1, b = 4,
α = 0.7, and ε = 0.1, we obtain for T a value greater than 1.9 billion.

Our proposal is not to use the state space restricted by the bound on the necessary radius
but a state space dynamically computed by column generation techniques. This will be the
topic of the next section.

4. A COLUMN GENERATION ALGORITHM FOR FINDING GOOD INDUCED MDPS

In order to compute local approximations of the optimal value vector vα
i0 around a particu-

lar state of a given MDP, it is usually inappropriate to apply the construction of Theorem 3.17
directly. In this section, we propose our algorithmic approach to approximate vα locally
which is based on the theory developed so far. Further applications of our algorithm include
the approximation for a concrete policy or a specific action at a single state. Details are given
in Section 5. The algorithmic approach presented below is the basis of our computational
tool that is applied in Section 5 to the elevator control problem. Finally we compare our
method to the approach of Dean et al. [DKKN93].

4.1. Algorithm. The general idea of our approximation algorithm is to start with a small
subset of states S1 ⊂ S containing the considered state i0 ∈ S. The state space S1 pro-
vides initial lower and upper bounds on vα

i0 via the solution of the corresponding linear

programs (Li0
S1
) and (Ui0

S1
). Then, in order to improve the approximation on vα

i0 , the state
space S1 is successively extended by adding new states. Note that each newly added
state i ∈ S\S1 results in one additional variable and |A(i)| additional constraints in both lin-
ear programs (Li0

S1∪{i}
) and (Ui0

S1∪{i}
). This way, the algorithm constructs a finite sequence

of subsets S1 ⊂ S2 ⊂ ·· · ⊂ Sn ⊆ S for some n ∈ N together with a sequence of improving
lower and upper bounds on vα

i0 obtained as the optimal values of the corresponding linear
programs. Using policy iteration instead of linear programming a similar algorithmic ap-
proach has already been proposed by Dean et al. [DKKN93]. However, our approach has
several advantages as we will see later.

Recall that the theoretical approximation results given in Theorem 3.17 and Corol-
lary 3.18 provide an approximation in terms of the absolute difference between upper and
lower bounds. In practice, however, a relative guarantee is typically more suitable when

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 17

Algorithm 1 Generic approximation algorithm
1: Input: an MDP (S,A, p,c) (given implicitly), a discount factor α ∈ [0,1), a state i0 ∈ S, a subset of states S⊆ S

with i0 ∈ S, ε > 0
2: Output: lower and upper bounds vi0 ,vi0 on vα

i0
with (vi0 − vi0)/vi0 ≤ ε

3: compute vi0 and vi0 as the optimal values of the linear programs (Li0
S) and (Ui0

S)
4: if (vi0 − vi0)/vi0 ≤ ε then
5: return vi0 ,vi0
6: else
7: S← S∪Snew for some Snew ⊆ S\S
8: go to step 3
9: end if

vi0 > 0. Therefore, the usual goal of our algorithm is to obtain an approximation on vα
i0 ,

where the relative difference between the upper and lower bounds is less than a desired
guarantee ε > 0, i. e.,

vi0 − vi0
vi0

≤ ε for vi0 > 0.

Once this approximation guarantee is obtained, the algorithm terminates. In the following,
we tacitly assume that vi0 > 0 whenever the relative performance guarantee is referred to.
The generic approximation algorithm is summarized in Algorithm 1. Clearly, Algorithm 1
terminates after a finite number of iterations since the state space S is finite and we have
vi0 = vi0 = vα

i0 for the optimal values of the linear programs (Li0
S) and (Ui0

S).

Remark 4.1. It has been shown in Theorem 3.10 that by solving the linear program (Ui0
S)

for some state space S⊆ S with i0 ∈ S, one can easily derive a policy π for the original MDP
with the property vα

i0(π)≤ vi0 . Consequently, our approximation algorithm also determines
a near-optimal action a0 at state i0 in the sense that there exists a policy π with π(i0) = a0
such that (vα

i0(π)− vα
i0)/vα

i0 ≤ ε .

4.2. Column Generation. Our implementation of Algorithm 1 is based on the idea to
extend the considered state space dynamically by means of column generation, which
is a standard technique for solving large-scale linear programs. We refer to the book of
Desaulniers et al. [DDS05] for details about column generation. The original problem
we aim to solve (approximately) here is (Li0

S), which equals the linear program (Pi0).
Consequently, the master problem that is to be solved in each iteration of the column
generation is (Li0

S) for some subset of states S ⊆ S with i0 ∈ S. Thus, for computing the
sequence of state spaces S1 ⊂ S2 ⊂ ·· · ⊂ Sn ⊆ S we solely consider the linear programs
providing the lower bounds on vα

i0 . The linear programs (Ui0
S) only contribute in terms of

the computed upper bounds. We mention that it is not straight-forward to apply column
generation w. r. t. some linear program (Ui0

S) with S⊂ S since an associated feasible solution
cannot be extended trivially to one for (Li0

S). Using our column generation algorithm good
approximations on vα

i0 can be provided by proper subsets of S that are substantially smaller
than the original state space S, as we will see later.

In order to specify our column generation method in detail, consider the dual linear
program of (Li0

S), which reads as follows in scalar notation:

min ∑
i∈S

∑
a∈A(i)

ci(a)uia (DLi0
S)

subject to ∑
a∈A(i0)

ui0a−α ∑
i∈S

∑
a∈A(i)

pii0(a)uia = 1

∑
a∈A(j)

u ja−α ∑
i∈S

∑
a∈A(i)

pi j(a)uia = 0 ∀ j ∈ S\{i0}

uia ≥ 0 ∀i ∈ S ∀a ∈ A(i).

18 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

i0

ar

5
1

au
0

1/2

i1
1/2

ar

51

au
5

1/2

i2
1/2

ar

5

1

au
10

1/2

i3
1/2

FIGURE 3. Part of the Markov decision process for the machine replace-
ment problem.

Given an optimal solution u of the dual linear program (DLi0
S) for some subset S⊂ S, the

reduced profit p̄ j of a state j ∈ S\S equals:

p̄ j = α ∑
i∈S

∑
a∈A(i)

pi j(a)uia. (12)

Depending on the structure of the MDP it can happen that a possibly small and proper
subset of states S suffices to compute vα

i0 exactly. This is the case in situations where many
states are not reachable from i0 or only via actions that can be classified by the algorithm to
be non-optimal. Such a situation is shown in the following example.

Example 4.2. Consider the following machine replacement problem, e. g., see [Ber01,
volume 1, chapter 1]. A single machine is to be operated in an efficient way for a given
number of periods. In the course of time, the machine may fall off in quality. That is, at
the beginning of each period the machine is in any of n ∈ N states, denoted by i0, i1, . . . , in,
where states become worse with increasing index. State i0 corresponds to a machine in
perfect condition. Operating the machine for one period may cause the current state to
degrade or to stay unchanged. Consider a state ik for some k ∈ {0, . . . ,n}. Then there exist
two possible actions:

• au: use the machine as it is for one period at a cost of ck ∈ R+ which brings the
machine to state il with probability pikil for l ∈ {k, . . . ,n}.
• ar: repair the machine at a cost of cr ∈ R+ which brings it to the perfect state i0

and allows for operating the machine for one period at zero cost without a possible
degeneration of the machine.

Assuming to operate the machine for an infinite number of periods, an MDP (S,A, p,c)
for the machine replacement problem is naturally given by:

S= {i0, . . . , in} ,
A(ik) = {au,ar} ∀k ∈ {0, . . . ,n},

pikil (au) = pikil ∀k, l ∈ {0, . . . ,n},

pikil (ar) =

{
1, if l = 0
0, if l 6= 0

∀k, l ∈ {0, . . . ,n},

cik(au) = ck ∀k ∈ {0, . . . ,n},
cik(ar) = cr ∀k ∈ {0, . . . ,n}.

In the example we consider 10 possible machine states, i. e., n = 9, and make the
(quite unrealistic but possible) assumption that ck = 5k for each k ∈ {0, . . . ,n} and cr = 5.
The transition probabilities equal pikik(au) = pikik+1(au) = 1/2 for k ∈ {0, . . . ,n−1} and
pinin(au) = 1. The associate Markov decision process is partially illustrated in Figure 3.

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 19

It is easy to see that using the machine as it is at state i0 and repairing the machine in
each other state defines an optimal policy for the MDP independently of the used discount
factor α ∈ [0,1).

Let S1 = {i0} be the initial subset of states. The associated dual linear program (DLi0
S1
)

reads:

min 0ui0au + 5ui0ar

subject to (1− α

2)ui0au+ (1−α)ui0ar = 1
ui0au ,ui0ar ≥ 0.

The optimal solution is unique and given by ui0au
= 2/(2−α) and ui0ar

= 0. Consequently,
the reduced profit of state i1 equals:

p̄i1 =
α

2
ui0au

=
α

2−α
> 0,

while each other state in S\S1 has reduced profit 0. Adding state i1, we obtain the subset of
states S2 = {i0, i1} and the associated dual linear program (DLi0

S2
):

min 0ui0au + 5ui0ar + 5ui1au + 5ui1ar

subject to (1− α

2)ui0au+ (1−α)ui0ar − αui1ar = 1

−α

2 ui0au + (1− α

2)ui1au + ui1ar = 0
ui0au ,ui0ar ,ui1au ,ui1ar ≥ 0.

One can show that for α ≤ 2/3 the optimal dual solution is given by:

ui0au
= 2/(2−α−α

2),

ui1ar
= α/(2−α−α

2),

ui0ar
= ui1au

= 0.

Therefore, the reduced profit of each state in S\S2 equals zero and the column generation
terminates having computed the component vα

i0 of the optimal value vector exactly. Due to
linear programming duality, we have vα

i0 = 5α/(2−α−α2).

On the other hand, if we have α > 2/3, the unique optimal solution of (DLi0
S2
) satisfies

ui1au
> 0 and ui1ar

= 0. Thus, the column generation continues: the greater α , the more
states are generated until the algorithms terminates. For instance, computational results
showed that for this example the algorithm generates all states in the case α = 0.99.

4.3. Approximation for Policies. Since we will consider different MDPs, the value vector
of an MDP M w. r. t. a given discount factor α will be denoted by vα

M in this section. Recall
that the value vector vα

M(π) of a concrete policy π for a given discount MDP (M,α) can
be computed by solving the system of linear equations (2). However, the usual methods to
solve a system in |S| variables and linear equations do not work for us because of the huge
state spaces we face in our context.

In this section, we address the local approximation of the value vector vα
M(π). The

following observation shows that this goal can be accomplished by the same method as
before, used for the local approximation of the optimal value vector.

Theorem 4.3. Given an MDP M = (S,A, p,c) and a policy π , define the policy induced
MDP M(π) = (S,A′, p′,c′) by A′(i) = {π(i)} for each state i∈ S and suitable restrictions p′

and c′ of the transition probabilities and stage costs. Then, we have vα
M(π) = vα

M(π) for any
discount factor α ∈ [0,1).

Proof. vα
M(π) = vα

M(π) follows from Theorem 3.1 on page 4 since the equations (2) for
policy π to compute vα

M(π) and the optimality equations (3) for M(π) are identical. �

20 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

By Theorem 4.3 we can approximate the value vector of a concrete policy π at a given
state in the same way as we did for the optimal value vector but using a different MDP. The
linear programs providing lower bounds on vα

M,i0(π) that are to be solved here are of the
following type, where S⊆ S:

max vi0 (Li0
S,π)

subject to QS,π v≤ cS,π

v ∈ RS.

The linear program (Li0
S,π) as well as the associated linear program (Ui0

S,π) providing an
upper bound on vα

M,i0(π), which we already introduced in Theorem 3.11, have as many
variables as constraints. Adding one state in the column generation method only results
in one new variable and one new constraint. Since it is not necessary to explore the
state space for several actions at one state, approximating vα

M,i0(π) is usually easier than
approximating vα

M,i0 . Therefore, the required state space for the former will often contain
fewer states than needed for the latter, especially if the number of possible actions at the
states is large. Of course, this difference applies for the neighborhood construction with
fixed radius as used in Corollary 3.18 and the approximation algorithm as well.

An optimal solution for the linear program (Li0
S,π) can obviously be obtained by solving

the corresponding system of linear equations.

Corollary 4.4. Given an MDP (S,A, p,c), a discount factor α ∈ [0,1), a policy π , a
state i0 ∈ S, and a subset of states S ⊆ S with i0 ∈ S, an optimal solution to the linear
program (Li0

S,π) is given by the unique solution of the following system of linear equations:

QS,π v = cS,π . (13)

Solving systems of linear equations instead of linear programs is another advantage in
the approximation of vα

M,i0(π) compared to that of vα
M,i0 .

4.4. Approximation for Actions. Note that for a given policy π and a state i0 ∈ S, the
component vα

i0(π) of the value vector of policy π does not only depend on the action π(i0),
but on many further decisions made by the policy as well. Thus, by comparing vα

i0(π) and
the component of the optimal value vector vα

i0 , the entire policy π is evaluated when the
initial state is i0.

Often it is more desirable to evaluate only a single action at a particular state (not an
entire policy), given that the decisions at other states are made w. r. t. an optimal policy. To
the best of our knowledge, this type of evaluation has not been proposed in the context of
MDPs before. Using another restriction of the original MDP, our method can be applied
for this purpose, too. We define the optimal total expected α-discounted cost w. r. t. a fixed
action as follows.

Definition 4.5. Given an MDP M = (S,A, p,c), a state i0 ∈ S, and an action a0 ∈ A(i0),
let M(i0,a0) = (S,A′, p′,c′) be the MDP with A′(i0) = {a0} and A′(i) = A(i) for each
state i∈ S\{i0} and suitable restrictions p′ and c′ of p and c, respectively. The optimal total
expected α-discounted cost vα

M,i0(a0) w. r. t. action a0 for a given discount factor α ∈ [0,1)
is defined by:

vα
M,i0(a0) = vα

M(i0,a0),i0
.

The value vα
M,i0(a0) can be seen as the value vector at state i0 of a policy that is optimal

among all policies that apply action a0 at state i0. Therefore, the difference between the
values vα

M,i0(a0) and vα
M,i0 reflects the impact of using action a0 at state i0 instead of an

optimal action.

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 21

Theorem 4.6. Given an MDP M = (S,A, p,c) and a state i0 ∈ S, an action a0 ∈ A(i0)
is optimal (as defined in Definition 3.2 on page 5) for a discount factor α if and only if
vα

M,i0(a0) = vα
M,i0 .

Proof. Let action a0 be optimal, i. e., there exists an optimal policy π for M with π(i0) = a0.
Since π is also a policy for the MDP M(i0,a0), we obtain:

vα
M = vα

M(π) = vα

M(i0,a0)
(π)≥ vα

M(i0,a0)
.

Therefore, vα
M = vα

M(i0,a0)
since vα

M ≤ vα

M(i,a) holds for each state i ∈ S and each action a ∈
A(i). In particular, we have vα

M,i0(a0) = vα

M(i0,a0),i0
= vα

M,i0 .
Now assume control a0 is not optimal. Hence, each policy π for M with π(i0) = a0 is

not optimal either, which gives:

vα
M < min

π:π(i0)=a0
vα

M(π) = vα

M(i0,a0)
,

where again x < y for vectors x,y ∈Rm means xi ≤ yi for each i ∈ {1, . . . ,m} and xi < yi for
at least one i ∈ {1, . . . ,m}.

Since the optimality equations (2) for computing vα
M and vα

M(i0,a0)
only differ for state i0:

vα
M,i0 = min

a∈A(i0)

{
ci(a)+α ∑

j∈S
pi0 j(a)vα

M, j

}
,

vα

M(i0,a0),i0
= ci0(a0)+α ∑

j∈S
pi0 j(a0)vα

M(i0,a0), j
,

vα
M,i0 = vα

M(i0,a0),i0
would imply vα

M = vα

M(i0,a0)
, which is a contradiction. Thus, we also have

vα
M,i0 < vα

M(i0,a0),i0
= vα

M,i0(a0). �

For an arbitrary subset of states S ⊆ S with i0 ∈ S, let QS,i0,a0 be the submatrix of QS,
where exactly the rows (i0,a) with a 6= a0 are removed. Similarly, let cS,i0,a0 be the subvector
obtained from cS by removing the components with index (i0,a) for a 6= a0. Now consider
the following linear program providing a lower bound on vα

M,i0(a0):

max vi0 (Li0
S,a0

)

subject to QS,i0,a0v≤ cS,i0,a0

v ∈ RS.

It is clear how the corresponding linear programs for computing upper bounds for vα
M,i0(a0)

would look like. It follows from the definition that vα
M,i0(a0) equals the optimal value of the

linear program for S = S. Since this linear program equals (Pi0) except for the constraints
for state i0, the computational effort for approximating vα

M,i0(a0) via our column generation
algorithm is expected to be similar to that required for the component vα

M,i0 of the optimal
value vector. In the approximation process linear programs of the type (Li0

S,a0
) restricted to

some subset of states S⊆ S are to be solved.
Obviously, Theorem 4.6 directly implies the following result.

Corollary 4.7. Given an MDP M = (S,A, p,c), a discount factor α , a state i0 ∈ S, and
an action a0 ∈ A(i0), assume that we have vα

M,i0(a)≥ vα
M,i0(a0) for each action a ∈ A(i0).

Then, the action a0 is optimal.

The corollary implies that our approximation algorithm may be employed to determine
an optimal action at a particular state i0. Assume that the algorithm has computed an
upper bound vM,i0(a0) on vα

M,i0(a0) for some action a0 ∈A(i0) and lower bounds vM,i0(a)≤
vα

M,i0(a) for each different action a∈A(i0)\{a0}. Then, if vM,i0(a0)≤ vM,i0(a) for each a∈
A(i0)\{a0}, the action a0 is optimal. In Section 5 we will exploit this observation in the
analysis of policies a for elevator control MDP.

22 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

4.5. Comparison. Finally, we briefly discuss our approximation algorithm compared to
the approach of Dean et al. [DKKN93]. The aim of their method is to find an optimal policy
for a state space restricted to those states which are likely to be encountered within a smaller
number of transitions. Similar to our approach, their algorithm computes an optimal policy
for the induced MDP in each iteration and extends the restricted state space dynamically
depending on the obtained policy. Instead of linear programming, policy iteration is used
to compute the optimal policies. The main advantages of Algorithm 1 compared to their
method are the following. Firstly, in the approximation process we are able to monitor the
current approximation guarantee, while the approach of Dean et al. only provides lower
bounds on vα

i0 . Thus, they cannot determine how good the current approximation really is.
Secondly, we are able to properly guide the expansion of the restricted state space as the
reduced profits of the candidate states are available. This way, our approximation algorithm
benefits substantially (see [Tuc10] for computational results). The method of Dean et al.
must use heuristic ideas to increase S, in particular, one strategy aims to estimate the reduced
profits. Probably, both algorithms have a similar run-time per iteration since the policy
iteration method and linear programming method for computing the optimal value vector
are in some sense equivalent. Our algorithm may be a bit slower per iteration when a second
linear program is solved.

5. APPLICATION AND COMPUTATIONAL RESULTS

In this section we present some seletected results on the outcomes of our tool on a
prominent example: the elevator control problem. It is one example out of three that
have been investigated with our tool so far. The other two computational studies have an
additional twist because they are about online algorithms, for which competitive analysis
showed counter-intuitive outcomes. We have chosen the elevator example because:

(1) the state space even of a very basic model is too large to be handled explicitly;
(2) the problem of finding performance guarantees of any kind was open;
(3) some new results could be obtained by using our method;
(4) the limitations of our method are emphasized as well.

For a more detailed, extensive computational study we refer to [Tuc10].
In the following, we introduce a Markov decision process formulation of the elevator

problem. We then briefly introduce the policies under investigation. Then, we introduce
the improved bounds for this problem which are essential to achieve interesting insights.
Finally, we state the instantiation of the elevator problem and the results.

5.1. Markov Decision Process Model. In order to formulate a Markov decision process
model, we deal with the following situation. The system operates a set of elevators E =
{1, . . . ,nE} in a building with a set of floors F = {1, . . . ,nF}. Each elevator can load at most
one request. At each floor there is a waiting area that accommodates at most q ∈ N∪{∞}
transport requests. We limit our considerations to a discrete time model. At each time slot
the current situation is described by the following data:

• Each elevator e ∈ E is situated at one floor fe ∈ E and is either loaded or empty.
• For each floor f ∈ F , there exists a sequence σ f = r1, . . . ,rn f of waiting requests,

where n f ∈ {0, . . . ,q} is their number. Moreover, each request rk for k ∈ {1, . . . ,n f }
is of the form rk =(f , fk,wk), where fk ∈F \{ f} is its destination floor and wk ∈N0
is the waiting time of request rk so far. Denote by wσ f := w1 the maximum waiting
time of a request in sequence σ f if it is non-empty, and let Σ f be the set of all
possible sequences at floor f .

Feasible Actions. If elevator e∈ E is loaded, let de ∈ F be the destination floor of the request
being transported, and let de = 0 otherwise. In one time unit an elevator e ∈ E can execute
exactly one of the following operations:

WAIT: at its current floor fe,

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 23

MOVE UP: one floor if fe < nF ,
MOVE DOWN: one floor if fe > 1,
LOAD: the next request at the current floor fe if de = 0 and σ fe 6= /0, i. e., the elevator

is empty and there is at least one request waiting at floor fe, or
DROP: the loaded request if fe = de, i. e., the elevator is loaded and its current floor

equals the destination floor of the loaded request.

State Space. A state i ∈ S in the Markov decision process model (S,A, p,c) is of the
following form:

i = (wmax,(σ f) f∈F ,(fe,de)e∈E),

where wmax ∈ N0 specifies the maximum waiting time of a request so far. Moreover, a state
captures all data concerning waiting requests and possibly loaded requests as well as the
positions of the elevators. We will also denote the parameters of a state i by wmax(i), σ f (i)
for each f ∈ F , and fe(i),de(i) for each e ∈ E. The resulting state space S is given by:

S= {(wmax,(σ f) f∈F ,((fe,de)e∈E) | wmax ∈ N0,wmax ≥ wσ f ∀ f ∈ F : σ f 6= /0,

σ f ∈ Σ f ∀ f ∈ F,

(fe,de) ∈ F× ({0}∪F) ∀e ∈ E}.

As the stored waiting times in a state may become arbitrarily large even if the waiting queue
length q is bounded, the state space S is infinite.

Each action in A(i) for a state i ∈ S is composed of one control decision a(e) for each
elevator e ∈ E, i. e., an action a ∈ A(i) is of the form a = (a(e1), . . . ,a(enE)). The control
decision of an elevator may be any one of the operations mentioned above: WAIT, MOVE UP,
MOVE DOWN, LOAD, DROP. However, we assume that a loaded elevator e ∈ E immediately
serves the request being transported: if fe < de or fe > de, the elevator e will move up or
down, respectively, and if fe = de, the request will be dropped.
Transitions. In our model each transition between two states is assumed to last exactly one
time step, moving from one time slot to the next one. Moreover, we assume that at most one
new request is released at each time slot. We describe possible state transitions only for the
case of a single elevator since the general case is obtained by handling the control decisions
of all elevators consecutively. If no new request arrives, the deterministic successor j ∈ S of
a state i ∈ S when using action a = (a(e)) ∈ A(i) is given by:

• The maximum waiting time at state j equals:

wmax(j) = max{wmax(i), max
f∈F : σ f (j)6= /0

wσ f (j)}.

• For each floor f ∈ F \ { fe}, we have σ f (j) = σ f (i). If a(e) = LOAD, the update
for the waiting queue at floor fe is σ fe(j) = r2, . . . ,rn fe

, where σ fe(i) = r1, . . . ,rn fe
.

Otherwise, we have σ fe(j) = σ fe(i).
• The current floor and load of elevator e are updated by:

(fe(j),de(j)) =

(fe(i),de(i)), if a(e) = WAIT,

(fe(i)+1,de(i)), if a(e) = MOVE UP,

(fe(i)−1,de(i)), if a(e) = MOVE DOWN,

(fe(i), f1), if a(e) = LOAD,

(fe(i),0), if a(e) = DROP,

where r1 = (fe, f1,w1) denotes the first request in the sequence σ fe(i) in the loading
case.

When a new request r = (a,b,0) is released at a floor a ∈ F with destination floor b ∈
F \{a}, we obtain the successor (wmax(j),(σ ′f) f∈F ,(fe(j),de(j))) of state i. In this state,

24 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

we have σ ′f = σ f (j) for each floor f ∈ F \{a} and

σ
′
a =

{
σa(j)+ r, if |σa(j)|< q,
σa(j), if |σa(j)|= q,

where σa(j)+ r denotes the sequence with request r added to σa(j).
The transition probabilities p are defined by a two step process. Firstly, we have a fixed

probability that a new request is released at a state transition (Bernoulli distribution). If that
is the case, the start and destination floor of the new request are determined according to
some probability distribution in the second step.

Depending on the used objective function, the stage costs are given as follows. If we
focus on minimizing the maximum waiting time of a request, it is always assumed that the
waiting queues are unbounded, i. e., q = ∞. In this case, the stage cost ci(a, j) = cmax

i (a, j)
associated with states i, j ∈ S and action a ∈ A(i) equals the increase of the maximum
waiting time due to action a:

cmax
i (a, j) = wmax(j)−wmax(i).

Notice that the total sum of stage costs for the transitions of an (i, j)-path equals the total
increase of the maximum waiting time in this sequence of states.

For minimizing the average waiting time, we assume the waiting queue length to be
bounded, i. e., q < ∞. Whenever a request is released at a floor f ∈ F where the waiting
queue is full, i. e., |σ f |= q, the request is rejected from the system at a penalty cost of cp ≥ 1.
For each floor f ∈ F , let 0 ≤ p f ≤ 1 be the probability that a request is released at some
time slot at floor f . Given states i, j ∈ S and an action a ∈ A(i), let j′ ∈ S be the successor
of i using action a if no new request arrives. Then, the stage cost ci(a, j) = cavg

i (a, j) is
defined as the sum of all requests waiting at state i that are not loaded by action a plus the
expected penalty cost:

cavg
i (a, j) = ∑

f∈F
|σ f (i)|− |{e ∈ E | a(e) = LOAD}|

+

{
cp ·∑ f∈F : |σ f (j′)|=q p f , if σ f (j) = σ f (j′) for all f ∈ F ,
0, otherwise.

In the case the waiting queues of the states j and j′ differ, a new request has been released
at a floor where the waiting queue was not full w. r. t. state j′. Thus, the transition does not
involve a penalty cost.

Notice that cavg
i (a, j) equals the increase of the sum of all waiting times plus the expected

penalty cost. Thus the sum of the expected stage costs for all transitions of an (i, j)-path
equals the sum of all accumulated waiting times and expected penalty costs during the
associated time period. Minimizing this objective for a finite sequence of requests is
equivalent to minimizing the average waiting time.

We want to point out, that the basic Markov decision process model we consider here
differs substantially from the one used by Crites and Barto [CB98].

5.2. Policies. Later in this section we present some selected results for the policies de-
scribed below. Again for extensive computational results we refer to [Tuc10].

The considered policies work as follows:

FIRSTINFIRSTOUT (FIFO): Serve the request with the smallest current waiting time
next (this request is unique by our assumption that at most one request is released
at each time slot). For the policy FIFO, we additionally store in each state the order
of arrival for the waiting requests.

NEARESTNEIGHBOR (NN): Determine a waiting request whose start floor is located
nearest to the current floor of the elevator. If there exists a unique request with this

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 25

property, serve it next. Otherwise, such a request exists in both directions. Then,
serve the one with smaller floor number next.

REPLAN: Compute a schedule minimizing the makespan (without returning to some
origin), i. e., the time needed to serve all waiting requests, and serve the requests ac-
cording to this schedule. We implemented a branch-and-bound method to compute
these schedules.

IGNORE: As long as a schedule is available, serve the waiting requests accordingly. If
no schedule is available, do the same as the policy REPLAN and store the schedule.
The policy IGNORE requires a modified MDP where each state encodes a schedule
containing a (possibly empty) subset of the waiting requests. Moreover, if for some
state this schedule is empty and a request is waiting, each associated action has a
second component that sets the schedule for all waiting requests.

5.3. Improved Bounds. We exploit involved lower and upper bounds on the compo-
nents vα

i of the optimal value vector. Recall that we consider two different elevator control
MDPs, one for analyzing the average waiting time and another for dealing with the maxi-
mum waiting time.

5.3.1. Average waiting time. The construction of state-specific bounds for the MDP mod-
eling the average waiting time is as follows. For each state i ∈ S, we employ a lower
bound vα

min(i)≤ vα
i consisting of two parts, i. e., vα

min(i) = vα,1
min(i)+ vα,2

min(i).
The first lower bound vα,1

min(i) takes into account future requests arriving in the system.
It is based on a lower bound for the probability pno elevator that a request arrives at a floor,
where no elevator is located. Let again 0 ≤ p f ≤ 1 be the probability that a request with
start floor f ∈ F is released at a time slot. Consider a permutation f1, . . . , f|F | ∈ F of
the floors such that the probabilities are non-decreasing w. r. t. the permutation: p f1 ≤
·· · ≤ p f|F | . Since in each state there exist at least |F | − |E| floors where no elevator is
located, the probability pno elevator is at least the sum of the |F | − |E| smallest arrival
probabilities p f1 , . . . , p f|F |−|E| , i. e., we have:

pno elevator ≥
|F |−|E|

∑
k=1

p fk .

Since each request arriving at a floor where no elevator is located will have a waiting time
greater or equal 1 and such a request can arrive at each time slot, we obtain:

vα
i ≥

pno elevator

1−α
≥ ∑

|F |−|E|
k=1 p fk
1−α

=: vα,1
min(i).

Note that the first inequality above is only valid since the penalty cost satisfies by assump-
tion cp ≥ 1≥ pno elevator. This gives the first part of the lower bound.

The second part vα,2
min(i) of the lower bound on vα

i for a state i ∈ S captures the total
α-discounted cost resulting from the requests waiting in state i. To this end, we consider a
relaxation of the elevator control problem where each elevator requires no time for moving
empty and all requests waiting at the same floor can be served in arbitrary order. Note that
the resulting problem is equivalent to a scheduling problem where the machines correspond
to the elevators and the jobs correspond to the waiting requests. In the following, the
current time slot at state i will be denoted by 0 and the consecutive time slots by 1,2,
Algorithm 2 determines a feasible schedule under the assumptions made and returns the
associated number of waiting requests for each future time slot. We claim that the obtained
schedule is optimal w. r. t. the resulting total α-discounted cost.

Theorem 5.1. Under the assumptions made, Algorithm 2 determines a schedule that serves
all waiting requests in state i at a minimum total α-discounted cost for each 0 ≤ α < 1.

26 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

Algorithm 2 Algorithm processing all waiting requests assuming that each elevator requires
no time for moving empty and that all requests at the same floor can be served in arbitrary
order. Note that in case of minimizing the average waiting time the information about the
maximum waiting time wmax is irrelevant.
1: Input: a state i = (wmax,(σ f) f∈F ,(fe,de)e∈E) in a Markov decision process with elevator set E and floor

set F
2: Output: a sequence of numbers nwait

0 , . . . ,nwait
t ∈ N0 for some t ∈ N0, where nwait

k is the number of requests
still waiting at time slot k for each k ∈ {0, . . . , t}

3: let n← |
⋃

f∈F σ f (i)| and re-index so that ∆1 ≤ ·· · ≤ ∆n is a non-decreasing sequence of distances |a−b| of
all waiting requests (w,a,b) ∈

⋃
f∈F σ f (i)

4: for each e ∈ E do . get minimum loading time slot for elevator e
5: if de = 0 then . elevator empty
6: f ← fe and te← 0
7: else . elevator loaded
8: f ← de and te← | fe−de|+1 . driving and dropping time
9: end if

10: te← te +min(a,b,w)∈⋃ f∈F σ f (i) | f −a| . add time to reach request
11: end for
12: t← 0
13: nwait

t ← n . no request served yet
14: for k = 1 to n do
15: let e′ ∈ argmine∈E te
16: nwait

t+1 , . . . ,n
wait
te′−1← nwait

t . no more requests loaded before time te′

17: nwait
te′
← nwait

t −1 . one request loaded at time te′
18: t← te′
19: te′ ← te′ +∆i +2 . add driving and loading/dropping time
20: end for
21: return nwait

0 , . . . ,nwait
t

This cost equals:
t

∑
k=0

α
knwait

k

Proof. We refrain from giving a rigorous proof here. Algorithm 2 is essentially the Shortest
Processing Time First rule, which is known to be optimal for the sum of completion times.
Since all requests have already been released, a schedule with optimal total completion time
has optimal total flow time as well. Discounting does not affect optimality here. �

The result above implies the second lower bound for state i ∈ S:

vα,2
min(i) :=

t

∑
k=0

α
knwait

k ≤ vα
i .

Notice that vα,2
min(i) takes into account the costs incurred from currently waiting requests

only, while vα,1
min(i) solely considers costs due to future requests. Therefore, their sum

vα
min(i) := vα,1

min(i)+vα,2
min(i) is a valid lower bound for the component vα

i of the optimal value
vector, too.

Obviously, the trivial upper bound vα
max = cmax/(1−α) is very weak in the considered

elevator control MDP for most states since the maximum expected stage cost equals cmax =
|F |q+cp ∑ f∈F p f . The approach to determine a suitable upper bound vα

max(i)≥ vα
i for each

state i ∈ S is to compute the expected total number of waiting requests and the expected
penalty for each future time slot t up to some limit assuming that no requests are served.

Let Nwait
t ∈ N0 and Nwait

t, f denote the random variables for the total number of waiting
requests and the number of requests waiting at floor f ∈ F for time slot t ∈ N0, respectively.

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 27

By the linearity of the expectation we have:

E[Nwait
t] = E[∑

f∈F
Nwait

t, f] = ∑
f∈F

E[Nwait
t, f].

For each f ∈ F , the expected value E[Nwait
t, f] can be computed according to the arrival

probability p f at floor f by:

E[Nwait
t+1, f] = min{E[Nwait

t, f]+ p f ,q}.
Moreover, let Pt ≥ 0 denote the random penalty cost for a stage t ∈ N0. In order to

determine the expected penalty E[Pt], we compute the probability pfull
t, f that the waiting

queue at a floor f ∈ F is full at time slot t. Let c f := q−|σ f (i)| be the remaining capacity
at each floor f ∈ F in state i. Note that we always have pfull

t, f = 0 as long as t < c f since
at most one request is released each stage. Generally, pfull

t, f equals the probability that at
least c f new requests have arrived at floor f by time t. Therefore, we obtain for each t ∈N0:

pfull
t, f =

t

∑
k=c f

(
t
k

)
pk

f (1− p f)
t−k.

Again by the linearity of the expectation, the expected penalty E[Pt] at time t ∈ N0 equals:

E[Pt] = cp ∑
f∈F

pfull
t, f · p f .

Given the expected number of waiting requests E[Nwait
t] and the expected penalty

cost E[Pt] under the assumption that no requests are served, for each time slot t ∈ N0,
we have:

vα
i ≤

∞

∑
t=0

α
t(E[Nwait

t]+E[Pt]).

Clearly, it is impossible to determine an infinite number of expectations. We stop the
expensive computation described above at a time slot tmax when the maximum total α-
discounted expected cost α tmaxvα

max after time tmax falls below some threshold value (e. g.,
0.1) and add α tmax vα

max. Thus, we obtain the upper bound:

vα
i ≤ α

tmax vα
max +

tmax

∑
t=0

α
t(E[Nwait

t]+E[Pt]) =: vα
max(i).

Notice that the construction above assumes that none of the requests currently waiting
in a state are ever served. We mention that for approximating the component vα

i of the
optimal value vector for some i ∈ S, it is possible to take into account the processing of
the requests waiting in state i according to any feasible schedule. In doing so, the expected
stage costs E[Nwait

t] and E[Pt] reduce for some time slots t due to serving requests in state i.
Consequently, we obtain an improved upper bound vα

max(i). Our implementation applies
the feasible schedule obtained by the policy NN. Note that this construction is generally
infeasible when the goal is to approximate the value vα

i0(π) for a policy π since the schedule
of π may change when additional requests arrive. Obviously, this is not the case for FIFO,
i. e., we can employ the improved bound according to the schedule obtained by FIFO. For
all other policies under consideration we have to assume that no requests are served.

5.3.2. Maximum waiting time. In the elevator control MDP modeling the maximum waiting
time, a lower bound vα

min(i)≤ vα
i for a state i ∈ S is obtained as follows. Let Fwait(i)⊆ F

be the subset of floors where at least one request is waiting in state i, i. e., Fwait(i) = { f ∈
F | σ f (i) 6= /0}. Moreover, for each floor f ∈ Fwait(i), let r f denote the first request in the
waiting queue σ f (i) in state i.

The idea for constructing the lower bound on vα
i is to determine for each floor f ∈ Fwait(i)

the smallest time t f by which an elevator can reach floor f , after possibly having served
a loaded request. That is, each request r f for a floor f ∈ Fwait(i) cannot be loaded before

28 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

Algorithm 3 Algorithm for computing for a given state, a set of time slots, where the
maximum waiting time will increase.

1: Input: a set of non-empty floors Fwait(i), current waiting times w f (i) and final waiting times wfinal
f for each

f ∈ Fwait, the maximum current waiting time wmax(i)
2: Output: a finite set of time slots T ⊂ N0, where the maximum waiting time will increase
3: T ← /0, Fwait← Fwait(i), and wmax← wmax(i)
4: while Fwait 6= /0 do
5: let f ′ ∈ argmax f∈Fwait

w f (i) . Get floor with oldest request
6: if wfinal

f ′ > wmax then
7: T ← T ∪{wmax−w f ′ (i), . . . ,wfinal

f ′ −w f ′ (i)−1}
8: wmax← wfinal

f ′

9: end if
10: Fwait← Fwait \{ f ′}
11: end while
12: return T

time t f . Consequently, the smallest possible final waiting time of request r f equals wfinal
f :=

w f (i)+t f , where w f (i) denotes the present waiting time of request r f in state i. Note that the
current maximum waiting time wmax(i) will increase if we have max f∈Fwait(i) wfinal

f >wmax(i).
By considering all floors f ∈ Fwait(i) in order of decreasing current waiting times w f (i),
one can determine a subset of time slots T ⊂ N0, where the maximum waiting time will
increase, i. e., the associated stage cost equals 1. Algorithm 3 describes in detail how to
compute these time slots. It is easy to see that Algorithm 3 correctly determines the set
of time slots T at which the maximum waiting time will increase. The set T implies the
following lower bound on vα

i :

vα
i ≥ ∑

t∈T
α

t =: vα
min(i).

Clearly, an upper bound vα
max(i) for a state i ∈ S can be derived by arbitrarily serving

the requests waiting in state i and assuming that another request is released at time slot 1
and never served. Consider any policy to compute a feasible schedule for all waiting
requests. In our implementation we use FIFO. According to the schedule we obtain the
subset of time slots T ⊂ N0, where the maximum waiting time will increase (the method
to determine T is similar to Algorithm 3). For constructing the second part of the bound
let wmax be the maximum final waiting time of a request in state i w. r. t. the used schedule.
Note that the waiting time of a request released at time slot 1 will be bounded by wmax until
time wmax +1. Therefore, never serving this request implies a stage cost of 1 for the time
slots wmax +1,wmax +2, Putting the two parts of the construction together, we obtain
the following upper bound on vα

i :

vα
max(i) := ∑

t∈T
α

t +
∞

∑
t=wmax+1

α
t = ∑

t∈T
α

t +
αwmax+1

1−α
≥ vα

i .

Similar as before, this upper bound is in general not valid if a component vα
i0(π) of the

value vector of a given policy π is to be approximated, although the bound is again valid
for FIFO. For other policies, we use a simple upper bound for vα

i (π) with i ∈ S obtained by
computing the maximum current waiting time w(i) of a request in state i. It is clear that the
stage cost will equal 0 for the time slots 0, . . . ,wmax(i)−w(i)−1. This implies the upper
bound:

vα
max(i) :=

αwmax(i)−w(i)

1−α
≥ vα

i (π).

5.4. Studied Instances. Finally, we introduce the instances of the two described Markov
decision processes for online elevator control that are studied in the sequel. Recall that the

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 29

TABLE 1. Considered instances of the elevator control Markov decision
processes. The considered start-to-destination floor probability distribu-
tions, denoted by ud and sp are given in Table 2 and Table 3, respectively.

instance nF nE q cp pr psd |S|

ela-1-4-10-02-sp 8 1 4 10 0.2 sp 2 086 898 858
elm-1-02-ud 8 1 ∞ – 0.2 ud ∞

TABLE 2. The start-to-destination floor probability distribution ud rep-
resenting combined up and down traffic of equal intensities. f1 and f2
denote arbitrary start and destination floors with f1, f2 ∈ {2, . . . ,8}.

start floor destination floor
1 f2

1 – 1/14
f1 1/14 –

TABLE 3. The start-to-destination floor probability distribution sp repre-
senting a special situation.

start floor destination floor
1 2 3 4 5 6 7 8

1 – – – 1/20 – 3/20 – 2/20
2 – – – – – – – –
3 – – – – – – – –
4 2/20 – – – – 1/20 – 1/20
5 – – – – – – – –
6 3/20 – – – – – 2/20 1/20
7 – – – – – – – –
8 2/20 – – – – 2/20 – –

two models differ only in the stage costs. In each case we can specify an instance by the
following data:

• a number of floors nF ∈ N defining the set of floors F := {1, . . . ,nF},
• a number of elevators nE ∈ N defining the elevator set E := {1, . . . ,nE},
• a waiting queue length q ∈ N∪{∞},
• a penalty cost cp ≥ 1,
• a probability 0≤ pr ≤ 1 that exactly one new request is released at a time slot, and
• a probability distribution for the start and destination floor of a new request

given by a function psd : F × F → R with psd(f , f) = 0 for each floor f ∈ F
and ∑ f1∈F ∑ f2∈F psd(f1, f2) = 1, i. e., the probability that a new request has start
floor f1 ∈ F and destination floor f2 ∈ F equals psd(s,d).

The two instances we consider are given in Table 1. We keep the same names as
in [Tuc10]. The instance ela-1-4-10-02-sp is a Markov decision process for the
case of minimizing the average waiting time, while the one for minimizing the maximum
waiting time is called elm-1-02-ud. Here, we only look at problems featuring a single
elevator (see [Tuc10] for more tests). We focus on two different distributions for the start
and destination floors of new requests. On the one hand, we look at combined up and down
traffic, i. e., for each transport request, Floor 1 is either its start floor or its destination floor
(see Table 2). This setting is natural for a cargo elevator system in an automated warehouse,
where goods are placed into storage and retrieved over time. On the other hand, Table 3

30 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

shows a special traffic situation that may be representative for some time in the course of
a day. One can think of this situation as follows. Still, there are some requests arriving at
Floor 1 to be placed into storage and some requests are retrieved, but only a subset of floors
are currently utilized. Moreover, there is some interfloor traffic, i. e., requests have start and
destination floors that are different from floor 1. This may be due to production processes
taking place or required relocations of the stored goods.

5.5. Reading the Charts. We aim at monitoring during the computation for a selected
state i0 ∈ S that is reached while running a simulation or real-world system the following
quantity:

ε
α
i0 (π) :=

vα
i0(π)− vα

i0
vα

i0

whenever vα
i0 > 0, (14)

where π is a particular policy for the considered MDP. The value εα
i0 (π) gives the relative

increase of the total α-discounted expected cost for the initial state i0 ∈ S when using
policy π or action π(i0) instead of an optimal policy. Since it is generally impossible to
compute the quantities defined in Equation (14) exactly, we aim at providing lower bounds.
This requires an upper bound on the component vα

i0 of the optimal value vector and a lower
bound on vα

i0(π) or vα
i0(π(i0)), respectively, which are all obtained by our approximation

algorithm.
The evaluation figures are arranged as follows. One chart may show for one particular

state i0, the approximation progress of
• an optimal policy: vα

i0 and
• a concrete policy π: vα

i0(π).
In the following we will refer to the values vα

i0 and vα
i0(π) simply as the optimal cost and the

cost of policy π , respectively.
For each cost value reported, we depict the progress of lower and upper bounds computed

in the approximation process depending on the number of explored states and generated
variables, respectively. Additionally, we will provide the best obtained lower bounds on the
value εα

i0 (π) for each analyzed policy π .

5.6. Approximation Results for the Average Waiting Time. For this test, we selected a
discount factor of α = 0.8 and the trivial initial state i2 = ielv

1 where no transport request is
waiting and the elevator is situated at floor 1. The associated approximation results for the
MDP are depicted in Figure 4. Obviously, none of the considered policies is really close to
an optimal policy for the initial state i2.

Observe the effectivity of the column generation: Our method proves that NN is not
optimal using less than 10 000 states. It proves that NN is better than REPLAN using around
60 000 states. The proof that IGNORE and FIFO are worse than REPLAN takes around
50 000 states. After the generation of no more than 10 000 states, we know the cost of an
optimal policy up to approximately 0.1, i.e., by then we have reached an accuracy of better
than 5 %. Compared to this, the size of a static set of states determined by the formula of
Theorem 3.17(i) for an approximation guarantee of 0.1 would be larger than the whole state
space with 2 086 898 858 states.

The most interesting constructive observation we made relating to these results is the
following: an optimal action at state i2 is to move the elevator upwards. In the case no
request is to be served by an elevator we face the task to position it such that future requests
can be handled well. This issue is often referred to as the parking policy in the literature.
Obviously, all of the considered policies do trivial parking, i. e., an elevator that is not
dedicated to serve a request simply waits at its current floor. Our approximation method
proves that this parking policy is not optimal for the state i2. This result motivates to
compare the actions WAIT, MOVE DOWN, and MOVE UP also for each state, where no request

1We chose the notation i2 instead of i0 to be consistent with the states considered in [Tuc10]

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 31

8
7
6
5
4
3
2
1

(a)

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 20000 40000 60000 80000 100000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

FIGURE 4. (a) Trivial state i2 in an elevator control MDP w. r. t. the
average waiting time for a single elevator and 8 floors. The initial state i2
has no waiting requests and the elevator at Floor 1 (b) Approximation
results for the elevator control MDP with 8 floors, one elevator, 4 waiting
slots per floor and the special request distribution. We have εα

i2 (NN)≥
3.6%, εα

i2 (FIFO) ≥ 7.9%, εα
i2 (REPLAN) ≥ 5.1%, and εα

i2 (IGNORE) ≥
7.5%.

is waiting and the elevator is located at an arbitrary floor in F \{1}. That is, for each state
i = ((σ f) f∈F , fe,de) with σ f = /0 for each f ∈ F , de = 0, and arbitrary floor fe ∈ F , we
evaluate the total expected 0.8-discounted costs of all feasible actions. This way, we could
determine a unique optimal action for each of these states according to the approach due to
Corollary 4.7 on page 21. It turned out that the action WAIT is only optimal if the elevator
is located at floor 6. Otherwise, moving the elevator closer to floor 6 can be proven to be
optimal. Thus, we obtained an optimal parking policy for the corresponding MDP.

5.6.1. Approximation Results for the Maximum Waiting Time. Next, we analyze the perfor-
mance of the policies NN, FIFO, REPLAN, and IGNORE when the objective is to minimize
the maximum waiting time of a request. That is, we study the proposed elevator control
MDP w. r. t. the maximum waiting time. We report on the results for the MDP with 8 floors,
1 elevator, infinity queuing capacity and the up-down traffic distribution from Table 2. The
initial state i1 has one waiting requests at Floor 8, a maximal waiting time of 0 so far, and
the elevator in Floor 1. The discount factor α is set to 0.8 again.

Figure 5 shows the associated results obtained by our approximation algorithm for the
initial state i1. Obviously, the policy NN performs badly, and is provably worse than FIFO
and IGNORE. Moreover, the cost of REPLAN is shown to be greater than the cost of FIFO
and the optimal cost.

Although the studies for average and maximum waiting time elevator control MDPs can
only partitially reflect the behavior observed in simulations, we want to point out that our
analysis provided useful information to improve existing online algorithms. For instance,
let us consider the policy NN. Our results revealed that NN has the following weaknesses:

• NN does not employ a parking policy,
• its tie-breaking rule may lead to bad decisions, and
• the maximum waiting times achieved by NN are quite bad.

32 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

8
7
6
5
4
3
2
1

1(0)

wmax = 0

(a)

 4

 4.2

 4.4

 4.6

 4.8

 5

 0 10000 20000 30000 40000 50000

v
a

lu
e

 v
e

c
to

r
a

t
s
tu

d
ie

d
 s

ta
te

number of states / LP variables

optimal policy
policy NN

policy FIFO
policy Replan
policy Ignore

(b)

FIGURE 5. (a) State i1 in an elevator control MDP w. r. t. the maximum
waiting time for a single elevator and 8 floors. The initial state i1 has
one waiting requests at Floor 8 with destination at Floor 1, zero waiting
time so far, and the elevator in Floor 1. (b) Approximation results for
the elevator control MDP with 8 floors, 1 elevator, infinity queuing ca-
pacity, and up-down traffic. We have εα

i1 (NN)≥ 2.5%, εα
i1 (FIFO)≥ 0%,

εα
i1 (REPLAN)≥ 0.6%, and εα

i1 (IGNORE)≥ 0%.

Due to these observations, we define the policy NNPARK- f as the following modification
of NN:

• If the elevator is empty and there does not exist a waiting request, move the elevator
towards floor f .
• If the elevator is empty and the nearest waiting request is not unique, serve that

request with the greater waiting time first.
In order to focus even more on good maximum waiting times, we propose the following
extension of NNPARK- f : if the elevator is empty and there exists a waiting request whose
current waiting time equals the maximum waiting so far, this request is served next ignoring
all other requests. We denote this online algorithm by NNMAXPARK- f .

We assess by simulation whether these modifications of NN are advantageous for the
long-term behavior of the policy. The system defined by the Markov decision process
cconsists of one elevator, eight floors, and the objective is to minimize the maximum waiting
time, i. e., the queue length is infinite: We simulated for 10000 time steps and compute
average values for the observed average and maximum waiting times for 100 simulation runs.
Table 4 shows simulation results for two Markov decision processes featuring a probability
of pr = 0.1 for the arrival of a new request at a time slot (this generates quite a high load).
Obviously, NNPARK- f improves over NN for both, average and the maximum waiting times.
Moreover, the NNMAXPARK- f achieves by far the best maximum waiting times, while the
average waiting times are similar to those of the originial online algorithm NN, but inferior
compared to NNPARK- f .

5.7. Limitations. The weakness of our tool in the elevator control problem is the following:
since a relatively small discounting factor of 0.8 was necessary to reach conclusive results
in the computations, long-term effects that, e.g., would rule out FIFO as an efficient policy

LOCAL APPROXIMATION OF DISCOUNTED MARKOV DECISION PROBLEMS 33

TABLE 4. Average value for the average and maximum waiting times
achieved by the online algorithms NN and its variants NNPARK- f and NN-
MAXPARK- f according to 100 simulation runs for 10000 time steps. The
parking floor is chosen to be f = 6 for the MDP with start-to-destination
probability distributions sp (see Table 3) and f = 1 for ud (see Table 2).

Probability NN NNPARK- f NNMAXPARK- f
distribution avg. max. avg. max. avg. max.

sp 13.66 116.15 13.34 113.38 13.69 98.76
ud 12.26 139.33 11.93 128.59 12.26 97.94

(compare [FR06]) cannot be detected. Maybe, the computation starting in a different start
state (full system) can yield more information, but the general problem persists. In other
words, further research is needed to capture long-term effects. So far, our method is only
suited to assess the short-term performance issues of policies.

6. CONCLUSION

In this paper we presented a method to obtain performance guarantees for the expected
total cost of policies in discounted Markov decision processes. We introduced a technique
which is able to approximate for a given state of an MDP the discounted cost for a given
policy, for an optimal policy, and for individual actions (assuming that in all other states
an optimal action is chosen). We computed a tight bound on the number of states that
is sufficient to achieve a prescribed approximation guarantee; a number independent of
the size of the state space. To automatically exploit the special structures of individual
instances we introduced a column generation algorithm that can in many cases obtain a
performance guarantee using significantly fewer states than guaranteed by the general bound.
In order to illustrate strengths (provable performance guarantees for specific instances) and
weaknesses (assessment of long-term behaviour) of our approach, we thouroughly analyzed
the elevator control problem. The key-learnings led to the design of two new policies with
provable better performance in the considered states. This result was further confirmed by a
simulation study that is independent of our tool.

We believe, that the ability of the tool to reveal weak spots (i.e., states in which deci-
sions are far from optimal) of otherwise not-so-bad policies can help to selectively modify
widely accepted policies in states in which they fail. And this without completely replac-
ing a plausible and easy-to-implement decision rule by rules solely based on numerical
calculations.

The tool introduce in this paper was also successfully applied in the analysis of online
algorithms for the online target-date assignment problem and the online bincoloring prob-
lem, where the performance assessment of competitive analysis yields counter-intuitive
results [Tuc10]. There, our tool could provide a performance analysis of online algorithms
embedded in the MDP framework that are much more in line with intuition and experience
from simulation.

In future research we plan to perform further significant performance assessments and
policy improvements for problems in dynamic optimization and online optimization for
which existing results are unsatisfactory.

REFERENCES

[BBS95] Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using real-time dynamic
programming. Artificial Intelligence, 72:81–138, 1995.

[Ber01] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume 1 and 2. Athena Scientific,
Belmont, 2nd edition, 2001.

34 STEFAN HEINZ, JÖRG RAMBAU, AND ANDREAS TUCHSCHERER

[BT96] Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming, volume 1. Athena Scien-
tific, Belmont, 1st edition, 1996.

[CB98] Robert H. Crites and Andrew G. Barto. Elevator group control using multiple reinforcement learning
agents. Machine Learning, 33(2–3):235–262, 1998.

[DDS05] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column generation. GERAD
25th anniversary series. Springer, 2005.

[d’E63] F. d’Epenoux. A probabilistic production and inventory problem. Management Science, 10(1):98–108,
1963.

[dFV03] Daniela P. de Farias and Benjamin Van Roy. The linear programming approach to approximate
dynamic programming. Operations Research, 51(6):850–865, 2003.

[dFV04] Daniela P. de Farias and Benjamin Van Roy. On constraint sampling in the linear programming
approach to approximate dynamic programming. Mathematics of Operations Research, 29(3):462–
478, 2004.

[DKKN93] Thomas L. Dean, Leslie Pack Kaelbling, Jak Kirman, and Ann E. Nicholson. Planning with deadlines
in stochastic domains. In AAAI, pages 574–579, 1993.

[FR06] Philipp Friese and Jörg Rambau. Online-optimization of a multi-elevator transport system with
reoptimization algorithms based on set-partitioning models. Discrete Appl. Math., 154(13):1908–
1931, 2006. Also available as ZIB Report 05-03.

[FS02] Eugene A. Feinberg and Adam Shwartz, editors. Handbook of Markov Decision Processes: Methods
and Applications. Kluwer Academic Publishers, 2002.

[GHKR99] Martin Grötschel, Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau. Simulation studies for
the online dial-a-ride problem. Report 99–09, ZIB, 1999. opus.kobv.de/zib/volltexte/
1999/398/.

[HKP+06] Stefan Heinz, Volker Kaibel, Matthias Peinhardt, Jörg Rambau, and Andreas Tuchscherer. LP-based
local approximation for Markov decision problems. Report 06–20, ZIB, 2006. opus.kobv.de/
zib/volltexte/2006/914/.

[KMN99] Michael J. Kearns, Yishay Mansour, and Andrew J. Ng. A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. In International Joint Conferences on Artificial
Intelligence, pages 1324–1331, 1999.

[Pow07] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality. John
Wiley and Sons, Inc., Hoboken, New Jersey, 1st edition, 2007.

[Put05] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, Inc., Hoboken, New Jersey, 2nd edition, 2005.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, 1st edition, 1998.

[SS85] Paul J. Schweitzer and Abraham Seidmann. Generalized polynomial approximations in Markov
decision processes. Journal of Mathematical Analysis and Applications, 110:568–582, 1985.

[Tuc10] Andreas Tuchscherer. Local Evaluation of Policies for Discounted Markov Decision Problems. PhD
thesis, Technische Universität Berlin, 2010.

