Titlebar

Export bibliographic data
Literature by the same author
plus on the publication server
plus at Google Scholar

 

There are integral heptagons, no three points on a line, no four on a circle

URN to cite this document: urn:nbn:de:bvb:703-opus-4233

Title data

Kreisel, Tobias ; Kurz, Sascha:
There are integral heptagons, no three points on a line, no four on a circle.
Bayreuth , 2007

[img] PDF
rare.pdf - Published Version
Available under License Creative Commons BY 3.0: Attribution .

Download (170kB)

Abstract

We give two configurations of seven points in the plane, no three points in a line, no four points on a circle with pairwise integral distances. This answers a famous question of Paul Erdös.

Abstract in another language

Wir geben zwei Konfigurationen von sieben Punkten in der Ebene, bei der keine drei Punkte auf einer Gerade und keine vier Punkte auf einem Kreis liegen, und bei der die paarweisen Abstände ganzzahlig sind, an. Dies löst ein offenes Problem von Paul Erdös.

Further data

Item Type: Preprint, postprint
Additional notes (visible to public): msc: 51K99; msc: 52-04; msc: 52A99; msc: 52C10
Keywords: Mathematisches Problem; Kombinatorik; Diskrete Geometrie; ganzzahlige Abstände; erschöpfende Suche; Lösung für ein Erdös-Problem; integral distances; exhaustive search; orderly generation; solution to an Erdös problem
DDC Subjects: 500 Science > 510 Mathematics
Institutions of the University: Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics in Economy
Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematics in Economy > Chair Mathematics in Economy - Univ.-Prof. Dr. Jörg Rambau
Faculties
Faculties > Faculty of Mathematics, Physics und Computer Science
Language: English
Originates at UBT: Yes
URN: urn:nbn:de:bvb:703-opus-4233
Date Deposited: 25 Apr 2014 11:23
Last Modified: 27 Mar 2019 13:22
URI: https://epub.uni-bayreuth.de/id/eprint/649

Downloads

Downloads per month over past year