Ganzzahlige Optimierungsmodelle für Subspace Codes und endliche Geometrie
No information
Project financing:
Deutsche Forschungsgemeinschaft
Abstract
The maximum size A_2(8,6;4) of a binary subspace code of packet length v=8, minimum subspace distance
d=6, and constant dimension k=4 is 257, where the 2 isomorphism types are extended lifted maximum rank distance codes. In Finite Geometry terms the maximum number of solids in PG(7,2), mutually intersecting in at most a point, is 257. The result was obtained by combining the classification of substructures with integer linear programming techniques.
This implies that the maximum size A_2(8,6) of a binary mixed-dimension code of packet length 8 and minimum subspace distance 6 is also 257.
Further data
Item Type:
Preprint, postprint
Additional notes (visible to public):
erschienen in:
Designs, Codes and Cryptography. Bd. 87 (März 2019) Heft 2-3 . - S. 375-391.
DOI: https://doi.org/10.1007/s10623-018-0544-8
Keywords:
constant dimension codes; integer linear programming