Titlebar

Bibliografische Daten exportieren
Literatur vom gleichen Autor
plus im Publikationsserver
plus bei Google Scholar

 

A distributed optimization algorithm for the predictive control of smart grids

URN zum Zitieren dieses Dokuments: urn:nbn:de:bvb:703-epub-2081-1

Titelangaben

Braun, Philipp ; Grüne, Lars ; Kellett, Christopher M. ; Weller, Steven R. ; Worthmann, Karl:
A distributed optimization algorithm for the predictive control of smart grids.
Department of Mathematics, University of Bayreuth; School of Electrical Engineering and Computer Science, University of Newcastle, Australia; Technische Universität Ilmenau
Bayreuth , 2015 . - 12 S.

Volltext

[img] PDF
Braun_Gruene_et_al_DistributedOptimizationAlgorithm_2015.pdf - Preprint
Available under License Deutsches Urheberrechtsgesetz .

Download (523Kb)

Angaben zu Projekten

Projekttitel:
Offizieller ProjekttitelProjekt-ID
DFG Priority Program 1305 "Control theory for digitally networked dynamical systems", Project "Performance Analysis for Distributed and Multiobjective Model Predictive Control"GR1569/13-1
ARC Future FellowshipFT1101000746

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

In this paper, we present a hierarchical, iterative distributed optimization algorithm, and show that the algorithm converges to the solution of a particular global optimization problem. The motivation for the distributed optimization problem is the predictive control of a smart grid, in which the states of charge of a network of residential-scale batteries are optimally coordinated so as to minimize variability in the aggregated power supplied to/from the grid by the residential network. The distributed algorithm developed in this paper calls for communication between a central entity and an optimizing agent associated with each battery, but does not require communication between agents. The distributed algorithm is shown to achieve the performance of a large-scale centralized optimization algorithm, but with greatly reduced communication overhead and computational burden. A numerical case study using data from an Australian electricity distribution network is presented to demonstrate the performance of the distributed optimization algorithm.

Weitere Angaben

Publikationsform: Preprint, Postprint, Working paper, Diskussionspapier
Keywords: distributed optimization; model predictive control; smart grid
Themengebiete aus DDC: 500 Naturwissenschaften und Mathematik > 510 Mathematik
Institutionen der Universität: Fakultäten
Fakultäten > Fakultät für Mathematik, Physik und Informatik
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik)
Fakultäten > Fakultät für Mathematik, Physik und Informatik > Mathematisches Institut > Lehrstuhl Mathematik V (Angewandte Mathematik) > Lehrstuhl Mathematik V (Angewandte Mathematik) - Univ.-Prof. Dr. Lars Grüne
Profilfelder
Profilfelder > Advanced Fields
Profilfelder > Advanced Fields > Nichtlineare Dynamik
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-2081-1
Eingestellt am: 23 Jun 2015 07:37
Letzte Änderung: 23 Jun 2015 07:41
URI: https://epub.uni-bayreuth.de/id/eprint/2081