Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Degradation path indicators for lithium-ion batteries

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008879
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-8879-6

Titelangaben

Ramasubramanian, Srivatsan ; Plank, Christian ; Danzer, Michael A. ; Röder, Fridolin:
Degradation path indicators for lithium-ion batteries.
In: Journal of Energy Storage. Bd. 140, Part B (2025) . - 119113.
ISSN 2352-1538
DOI der Verlagsversion: https://doi.org/10.1016/j.est.2025.119113

Volltext

[thumbnail of 1-s2.0-S2352152X25038265-main.pdf]
Format: PDF
Name: 1-s2.0-S2352152X25038265-main.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (7MB)

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Untersuchung der Interaktion von Degradationsprozessen bei der Alterung von Lithium-Ionen-Batterien mit variierenden Sequenzen
527466263
Open Access Publizieren
Ohne Angabe

Projektfinanzierung: Deutsche Forschungsgemeinschaft

Abstract

Battery aging can follow multiple degradation pathways, which influence future aging due to self-amplification, self-limitation, and interactions among mechanisms. This phenomenon is known as path-dependent aging. Understanding path dependency is crucial for reliable lifetime prediction and requires identifying distinct degradation pathways. In this study, k-means clustering is applied to aging data from 48 commercial lithium-ion batteries (LIB), cycled under 24 combinations of temperature and C-rate. Key degradation metrics, including capacity fade, pulse resistance, and degradation modes, are used to construct path-indicator spaces. Clustering with degradation modes reveals three distinct degradation regimes, characterized by proximity in both path-indicator and stress-factor space. These regimes are further validated using microscopic analysis of the negative electrode and distribution of relaxation times analysis. Based on the findings, general guidelines are proposed for designing dynamic usage schedules to test path dependency in LIB aging. Therefore, the methodology presented in this study provides a generalizable framework for characterizing battery degradation with a multi-dimensional feature space and introduces an unsupervised approach for identifying distinct degradation pathways. Additionally, the proposed method can help in building dynamic test protocols that trigger distinct degradation pathways and aid in the development and validation of lifetime prediction models.

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Path-dependency; Degradation pathways; Unsupervised learning; Distribution of relaxation times analysis
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Elektrische Energiesysteme > Lehrstuhl Elektrische Energiesysteme - Univ.-Prof. Dr.-Ing. Michael Danzer
Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Methoden des Batteriemanagements > Juniorprofessur Methoden des Batteriemanagements - Juniorprof. Dr.-Ing. Fridolin Röder
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen > Bayerisches Zentrum für Batterietechnik - BayBatt
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Elektrische Energiesysteme
Fakultäten > Fakultät für Ingenieurwissenschaften > Juniorprofessur Methoden des Batteriemanagements
Forschungseinrichtungen
Forschungseinrichtungen > Zentrale wissenschaftliche Einrichtungen
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-8879-6
Eingestellt am: 10 Feb 2026 15:31
Letzte Änderung: 10 Feb 2026 15:32
URI: https://epub.uni-bayreuth.de/id/eprint/8879

Downloads

Downloads pro Monat im letzten Jahr