DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00008468
URN to cite this document: urn:nbn:de:bvb:703-epub-8468-0
URN to cite this document: urn:nbn:de:bvb:703-epub-8468-0
Title data
Kurz, Sascha:
Nodal surfaces in P^3 and coding theory.
Bayreuth
,
2025
. - 11 S.
![]() |
|
||||||||
Download (244kB)
|
Abstract
To each nodal hypersurface one can associate a binary linear code. Here we show that the binary linear code associated to sextics in P^3 with the maximum number of 65 nodes, as e.g. the Barth sextic, is unique. We also state possible candidates for codes that might be associated with a hypothetical septic attaining the currently best known upper bound for the maximum number of nodes.
Further data
Item Type: | Preprint, postprint |
---|---|
Keywords: | nodal hypersurface; linear code; Barth sextic; coding theory |
Subject classification: | Mathematics Subject Classification Code: 14J70 (94B05) |
DDC Subjects: | 000 Computer Science, information, general works > 004 Computer science 500 Science > 510 Mathematics |
Institutions of the University: | Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics Faculties > Faculty of Mathematics, Physics und Computer Science > Department of Mathematics > Chair Mathematical Economics Faculties Faculties > Faculty of Mathematics, Physics und Computer Science |
Language: | English |
Originates at UBT: | Yes |
URN: | urn:nbn:de:bvb:703-epub-8468-0 |
Date Deposited: | 23 May 2025 06:58 |
Last Modified: | 23 May 2025 06:58 |
URI: | https://epub.uni-bayreuth.de/id/eprint/8468 |