URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7992-6
Titelangaben
Abdalla, Khatab ; Schierling, Larissa ; Sun, Yue ; Schuchardt, Max A. ; Jentsch, Anke ; Deola, Thomas ; Wolff, Peter ; Kiese, Ralf ; Lehndorff, Eva ; Pausch, Johanna ; Meyer, Nele:
Temperature sensitivity of soil respiration declines with climate warming in subalpine and alpine grassland soils.
In: Biogeochemistry.
(9 Oktober 2024)
.
ISSN 1520-4995
DOI der Verlagsversion: https://doi.org/10.1007/s10533-024-01179-3
Volltext
|
|||||||||
Download (1MB)
|
Abstract
Warming as a climate change phenomenon affects soil organic matter dynamics, especially in high elevation ecosystems. However, our understanding of the controls of soil organic matter mineralization and dynamics remains limited, particularly in alpine (above treeline) and subalpine (below treeline) grassland ecosystems. Here, we investigated how downslope (warming) and upslope (cooling) translocations, in a 5-years reciprocal transplanting experiment, affects soil respiration and its temperature sensitivity (Q10), soil aggregation, and soil organic matter carbon (C) and nitrogen (N) composition (C/N ratio). Downslope translocation of the alpine (2440 m a.s.l.) and subalpine (1850 m a.s.l.) to the lowland site (350 m a.s.l.) resulted in a temperature change during the growing seasons of + 4.4K and + 3.3K, respectively. Warming of alpine soils (+ 4.4K) reduced soil organic carbon (SOC) content by 32%, which was accompanied by a significant decrease of soil macroaggregates. Macroaggregate breakdown induced an increased respiration quotient (qCO2) by 27% following warming of alpine soils. The increase in qCO2 respiration was associated with a significant decrease (from 2.84 ± 0.05 to 2.46 ± 0.05) in Q10, and a change in soil organic matter composition (lower C/N ratios). Cooling did not show the opposite patterns to warming, implying that other mechanisms, such as plant and microbial community shifts and adaptation, were involved. This study highlights the important role of SOC degradability in regulating the temperature response of soil organic matter mineralization. To predict the adverse effect of warming on soil CO2 release and, consequently, its negative feedback on climate change, a comprehensive understanding of the mechanisms of C storage and turnover is needed, especially at high elevations in the Alps that are particularly affected by rising temperatures.
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Keywords: | Grasslands; Soil aggregates; Soil organic matter; Climate change |
Themengebiete aus DDC: | 500 Naturwissenschaften und Mathematik > 500 Naturwissenschaften 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften; Biologie |
Institutionen der Universität: | Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Agrarökologie > Professur Agrarökologie - Univ.-Prof. Dr. Johanna Pausch Fakultäten Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften Fakultäten > Fakultät für Biologie, Chemie und Geowissenschaften > Fachgruppe Geowissenschaften > Professur Agrarökologie |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-7992-6 |
Eingestellt am: | 14 Okt 2024 08:27 |
Letzte Änderung: | 14 Okt 2024 08:27 |
URI: | https://epub.uni-bayreuth.de/id/eprint/7992 |