URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7561-2
Titelangaben
Ma, Xiaohu ; Bifano, Luca ; Fischerauer, Gerhard:
Evaluation of electrical impedance spectra by long short-term memory to estimate nitrate concentrations in soil.
In: Sensors.
Bd. 23
(2023)
Heft 4
.
- 2172.
ISSN 1424-8220
DOI der Verlagsversion: https://doi.org/10.3390/s23042172
Volltext
|
|||||||||
Download (2MB)
|
Angaben zu Projekten
Projekttitel: |
Offizieller Projekttitel Projekt-ID Open Access Publizieren Ohne Angabe |
---|---|
Projektfinanzierung: |
VolkswagenStiftung |
Abstract
Monitoring the nitrate concentration in soil is crucial to guide the use of nitrate-based fertilizers. This study presents the characteristics of an impedance sensor used to estimate the nitrate concentration in soil based on the sensitivity of the soil dielectric constant to ion conductivity and on electrical double layer effects at electrodes. The impedance of synthetic sandy soil samples with nitrate-nitrogen concentrations ranging from 0 to 15 mg/L was measured at frequencies between 20 Hz and 5 kHz and noticeable conductance and susceptance effects were observed. Long short-term memory (LSTM), a variant of recurrent artificial neural networks (RNN), was investigated with respect to its suitability to extract nitrate concentrations from the measured impedance spectra and additional physical properties of the soils such as mass density and water content. Both random forest and LSTM were tested as feature selection methods. Then numerous LSTMs were trained to estimate the nitrate concentrations in the soils. To increase estimation accuracy, hyperparameters were optimized with Bayesian optimization. The resulting optimal regression model showed coefficients of determination between true and predicted nitrate concentrations as high as 0.95. Thus, it could be demonstrated that the system has the potential to monitor nitrate concentrations in soils in real time and in situ
Weitere Angaben
Publikationsform: | Artikel in einer Zeitschrift |
---|---|
Keywords: | Nitrate concentration; electrical impedance spectroscopy; EIS; recurrent artificial neural network; RNN; long short-term memory; LSTM; Random Forest |
Themengebiete aus DDC: | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften |
Institutionen der Universität: | Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik > Lehrstuhl Mess- und Regeltechnik - Univ.-Prof. Dr.-Ing. Gerhard Fischerauer Fakultäten Fakultäten > Fakultät für Ingenieurwissenschaften Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik |
Sprache: | Englisch |
Titel an der UBT entstanden: | Ja |
URN: | urn:nbn:de:bvb:703-epub-7561-2 |
Eingestellt am: | 18 Mrz 2024 09:05 |
Letzte Änderung: | 18 Mrz 2024 09:05 |
URI: | https://epub.uni-bayreuth.de/id/eprint/7561 |