Suche nach Personen

plus im Publikationsserver
plus bei Google Scholar

Bibliografische Daten exportieren
 

Evaluation of electrical impedance spectra by long short-term memory to estimate nitrate concentrations in soil

DOI zum Zitieren der Version auf EPub Bayreuth: https://doi.org/10.15495/EPub_UBT_00007561
URN zum Zitieren der Version auf EPub Bayreuth: urn:nbn:de:bvb:703-epub-7561-2

Titelangaben

Ma, Xiaohu ; Bifano, Luca ; Fischerauer, Gerhard:
Evaluation of electrical impedance spectra by long short-term memory to estimate nitrate concentrations in soil.
In: Sensors. Bd. 23 (2023) Heft 4 . - 2172.
ISSN 1424-8220
DOI der Verlagsversion: https://doi.org/10.3390/s23042172

Volltext

[thumbnail of sensors-23-02172.pdf]
Format: PDF
Name: sensors-23-02172.pdf
Version: Veröffentlichte Version
Verfügbar mit der Lizenz Creative Commons BY 4.0: Namensnennung
Download (2MB)

Angaben zu Projekten

Projekttitel:
Offizieller Projekttitel
Projekt-ID
Open Access Publizieren
Ohne Angabe

Projektfinanzierung: VolkswagenStiftung

Abstract

Monitoring the nitrate concentration in soil is crucial to guide the use of nitrate-based fertilizers. This study presents the characteristics of an impedance sensor used to estimate the nitrate concentration in soil based on the sensitivity of the soil dielectric constant to ion conductivity and on electrical double layer effects at electrodes. The impedance of synthetic sandy soil samples with nitrate-nitrogen concentrations ranging from 0 to 15 mg/L was measured at frequencies between 20 Hz and 5 kHz and noticeable conductance and susceptance effects were observed. Long short-term memory (LSTM), a variant of recurrent artificial neural networks (RNN), was investigated with respect to its suitability to extract nitrate concentrations from the measured impedance spectra and additional physical properties of the soils such as mass density and water content. Both random forest and LSTM were tested as feature selection methods. Then numerous LSTMs were trained to estimate the nitrate concentrations in the soils. To increase estimation accuracy, hyperparameters were optimized with Bayesian optimization. The resulting optimal regression model showed coefficients of determination between true and predicted nitrate concentrations as high as 0.95. Thus, it could be demonstrated that the system has the potential to monitor nitrate concentrations in soils in real time and in situ

Weitere Angaben

Publikationsform: Artikel in einer Zeitschrift
Keywords: Nitrate concentration; electrical impedance spectroscopy; EIS; recurrent artificial neural network; RNN; long short-term memory; LSTM; Random Forest
Themengebiete aus DDC: 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften
Institutionen der Universität: Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik > Lehrstuhl Mess- und Regeltechnik - Univ.-Prof. Dr.-Ing. Gerhard Fischerauer
Fakultäten
Fakultäten > Fakultät für Ingenieurwissenschaften
Fakultäten > Fakultät für Ingenieurwissenschaften > Lehrstuhl Mess- und Regeltechnik
Sprache: Englisch
Titel an der UBT entstanden: Ja
URN: urn:nbn:de:bvb:703-epub-7561-2
Eingestellt am: 18 Mrz 2024 09:05
Letzte Änderung: 18 Mrz 2024 09:05
URI: https://epub.uni-bayreuth.de/id/eprint/7561

Downloads

Downloads pro Monat im letzten Jahr