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Abstract: Monitoring the nitrate concentration in soil is crucial to guide the use of nitrate-based
fertilizers. This study presents the characteristics of an impedance sensor used to estimate the nitrate
concentration in soil based on the sensitivity of the soil dielectric constant to ion conductivity and
on electrical double layer effects at electrodes. The impedance of synthetic sandy soil samples with
nitrate nitrogen concentrations ranging from 0 to 15 mg/L was measured at frequencies between
20 Hz and 5 kHz and noticeable conductance and susceptance effects were observed. Long short-
term memory (LSTM), a variant of recurrent artificial neural networks (RNN), was investigated with
respect to its suitability to extract nitrate concentrations from the measured impedance spectra and
additional physical properties of the soils, such as mass density and water content. Both random
forest and LSTM were tested as feature selection methods. Then, numerous LSTMs were trained to
estimate the nitrate concentrations in the soils. To increase estimation accuracy, hyperparameters were
optimized with Bayesian optimization. The resulting optimal regression model showed coefficients
of determination between true and predicted nitrate concentrations as high as 0.95. Thus, it could be
demonstrated that the system has the potential to monitor nitrate concentrations in soils in real time
and in situ.

Keywords: nitrate concentration; electrical impedance spectroscopy; EIS; recurrent artificial neural
network; RNN; long short-term memory; LSTM; random forest

1. Introduction

Nitrate nitrogen (nitrate-N) is one of the most important nutrients for securing the
yield and quality of harvested products. However, excessive content of nitrate in soil leads
to environmental problems. In Germany, nitrate is the main source of pollution for the
groundwater. Nationwide more than a quarter of all near-surface groundwater fails to meet
the nitrate target (50 mg/L) of the European Water Framework Directive [1]. Currently,
nitrate concentrations in soils are measured by laboratory methods, such as flow injection
analysis [2] and spectrophotometry [3]. Such methods require expensive equipment and
a time-consuming collection and preparation of samples. This is why the methods are
not used for continuous measurements, but only for sampling at larger intervals. To date,
a reliable low-cost and in situ nitrate monitoring system is still not available and much
needed [4,5].

A method that could eventually lead to such a monitoring system is electrical impedance
spectroscopy (EIS). EIS is a powerful measurement technique used to measure the complex
impedance of materials and systems over a range of frequencies. A small A-C signal
stimulus is applied to a conductive electrode, thus obtaining a characteristic response that
can be observed on the system surface. It has a high potential for fast, inexpensive, on-site
measurements and is therefore used in many fields, such as material characterization [6],
bioimpedance [7], battery diagnosis for state of health [8] and state of charge [9]. It is also
very common for quantitative measurement of the ion concentrations in electrochemical
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sensors [10,11]. Its potential applicability to the soil monitoring problem is justified by
the fact that soil is a three-phase system, composed of the solid, liquid, and gaseous
phases. This results in a dielectric constant, or relative permittivity, of between 2 and 14,
depending on the soil. The liquid phase is an ion solution containing nutrients, such
as nitrate, necessary for soil fertility and has a high static dielectric constant, which is
strongly influenced by the ion concentration—the higher the ion concentration, the smaller
the dielectric constant [12,13]. Water is a polar liquid with high dielectric relaxation and
therefore has a high static dielectric constant of 81 at room temperature. With the increase
in ion concentration, the ions orient the water molecules around them, thereby reducing
the dielectric constant to values as low as 40 by a local high-field effect [13].

In an electric A–C field, energy is absorbed and stored in soil solution mixtures. The
effect of energy storage is connected with the real part ε′(ω) of the permittivity, while the
energy absorption is connected with the imaginary part ε′′ (ω) of the permittivity. Here, ω
denotes the angular frequency.

Figure 1 shows a schematic representation of dielectric losses in soil as a function of
frequency [14]. Various effects contribute to the complex dielectric constant. It is obvious
that the ionic conductivity and the double-layer effect play major roles in the imaginary
part of the soil permittivity at lower frequencies. Both effects are strongly correlated to
the ion concentration [15]. At the same time the double-layer effect leads to a frequency-
dependence, which also influences the real part of the permittivity [15].
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When there is more than one ion species present in the soil, they all contribute to the
impedance spectrum. The mixture problem is always a challenge in chemical sensing [16].
Here we do not deal with it, but assume that only nitrate ions, if any, are present in the soil.
In the long run, one will want to remove this simplification, but in a first step it may be
justified by the fact that by far the biggest soil problem is precisely nitrate ions and not any
other ions [17].

With this assumption, in principle, these relationships in Figure 1 allow one to estimate
nitrate concentrations in soil indirectly from measured impedance spectra of soil samples.
In practice, however, there is no one-to-one mapping between given physical causes and
single features of an impedance spectrum. There exists a vast literature on physics-based
models of impedance spectra, mostly relying on equivalent circuits [18–20]. The spectrum
of a distributed system (with its uncountably infinite number of degrees of freedom) can
only be approximated by a lumped-element circuit (with its finite number of degrees of
freedom). The approximation may be made arbitrarily good by increasing the number of
circuit elements. Alternatively, one can use elements with frequency-varying characteristics,
such as Warburg impedances [21] or constant-phase elements [22]. These approaches
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exacerbate the one-to-one mapping problem and usually do not allow for predicting the
spectral response to physical changes in the system, such as geometry variations or analyte
concentration changes. This remark applies even more to mere a-posteriori description
methods, such as DRT [23,24] or to situations in which the entire spectrum cannot be
measured for practical reasons (e.g., when measurement times are limited to perform a fast
measurement such that small-frequency responses cannot be observed). However, even
in the absence of a one-to-one relationship between a nitrate concentration and a single
feature of a measured impedance spectrum, the desired information is somehow hidden
in the spectrum and entangled with other pieces of information. EIS was used in [25]
together with effective-media models to estimate nitrate concentrations in soils. The results
demonstrate the potential of the approach. However, model-based methods rely on soil
properties and ambient conditions, and the individual influences of water, nitrate, and soil
composition still remain unclear. For this reason, the resulting error is less than satisfactory
and one cannot state that the method has been fully established. In field environments,
other than in laboratories, it is impossible to measure all relevant influence quantities or
to isolate the measurement system from all the quantities. For reasons of effort, it is also
impractical to describe all relevant effects. Such problems are best handled by machine
learning approaches [26].

In this work, machine learning and neural networks are used to extract information
from impedance spectra to explore how well they are able to untangle the information mess.
This is consistent with the reasoning that we only want to gain information on the nitrate
concentration in the soil, despite the many influence effects, but do not require physical
cause-and-effect relationships (which, incidentally, are also not provided by the majority of
parametrized models, such as equivalent circuits).

To be more concrete, we consider long short-term memory (LSTM), a variant of
recurrent artificial neural networks (RNN) [27], to estimate nitrate concentrations in soils
based on measured impedance data. LSTM RNNs are particularly useful to cope with long-
term dependencies between different data points in time series (hence their name) [27,28].
They can detect patterns in a time series, such as a voice recording, because they not only
consider the data values but also include the positions of the data points in the series in
their prediction. There is no reason why the method should be restricted to time series
and should not be applicable to arbitrary data sequences, such as impedance spectra.
In fact, LSTM RNNs have been applied repeatedly to EIS data, e.g., to predict fuel-cell
degradation [29] and estimate the state of healthy lithium-ion batteries [30]

Often, it is not clear a priori which measurement data features are best passed to a
neural network to optimize its prediction accuracy. Before training the network (here: the
LSTM), the most suitable feature subset must be identified by a feature selection algorithm.
The resulting removal of redundant and irrelevant data facilitates the design and the
training of the neural network without incurring much loss of information [31]. Redundant
data may lead to overfitting and irrelevant data may cause long training times. In many
studies [32–34] LSTM RNNs are combined with different feature selection algorithms.
In [32], LSTM RNNs combined with random forest as feature selection methods (cf. below)
are used to predict the battery degradation. In [33] an improved forward selection using
light gradient boosting machines selected the optimal feature set and then LSTM RNNs
served to predict photovoltaic power generation. In [34] the features are selected by
Pearson’s correlation method with maximum relevancy and minimum redundancy as
criteria and then the selected features are passed to LSTM RNNs to predict the short-term
energy consumption of customers.

All these feature selection methods treat the series data first as discrete input data and
then estimate the importance of each feature. The dependency between data points in the
series is not considered. The selected features are delivered as sequence of data to LSTM
RNNs in which the dependencies between data points play an important role [27]. There-
fore, the feature selection methods mentioned above may not be optimal for LSTM RNNs.
In this work, a new feature selection method, combining sequential forward selection and
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LSTM, is developed, which processes variable-length sequences of inputs to evaluate the
relative importance of features in the measured data (electrical impedance spectra, soil
properties, and ambient conditions). With selected features the hyperparameters of LSTM
RNNs were tuned by Bayesian hyperparameter optimization and an optimized regression
model was built to estimate the nitrate concentration in sandy soils.

To validate the performance of this new method and compare the evaluation result
of nitrate concentration in synthetic soils with LSTM, feature selection and evaluation
with random forest (RF) is applied for comparison, all in the context of processing and
interpreting impedance spectra of soil samples.

RF is a known ensemble learning method that constructs a multitude of decision
trees independently at training time. In particular, each RF decision tree is trained using
a bootstrap set, which is randomly sampled from the input data with replacement (here
the input data are impedance spectra and measured values of other quantities, such as soil
density). In this way, about two thirds of the instances in the bootstrap set are unique and
used to build a decision tree, and about one third are left out as out-of-bag (OOB) instances
used to validate the decision tree [35]. The ensemble produces a forest of trees and outputs
of all trees are aggregated to produce a final prediction. In classification problems, the final
prediction is voted by the majority of trees. In regression, the output is the average of the
individual tree predictions.

As all decision trees are built over a random extraction of the instances from the
database and a random extraction of the variables, RF is also widely used to measure
variable importance. A suitable metric for this is the mean decrease in impurity (MDI),
also known as Gini importance, defined as the sum of all decreases in Gini impurity [36]
due to a given variable when this variable is used to form a split in the RF. Another
metric is the permutation importance which quantifies the variable importance based on
the reduction in model accuracy when permuting the values of a variable included in a
subset of variables that were split to grow the tree. Both metrics have been discussed and
compared extensively [37–39]. The mechanism of MDI is biased, i.e., it tends to inflate the
importance of continuous or correlated variables [37,39]. When the data set is too small,
permutation importance is also unstable and may lead to a wrong ranking of variable
importance [38]. Thus, the metric should be chosen carefully according to the measurement
problem. It is not clear a priori which metric is most suitable for the selection of features
from impedance spectra.

Another advantage of RF is the ability to measure variable association, which is an
indication of correspondence between variables. Variable correspondence can increase the
standard errors of a machine learning model [40]. It is an essential step to recognize the
relationship between variables for establishing a robust and accurate machine learning
model. RF is a tree-based algorithm and is able to use surrogate splits to measure the
association between variables. Such a surrogate split is an alternative to the optimal split at
a given node in a decision tree. It uses a similar or correlated variable and split criterion to
replace the optimal split variable and split criterion [41].

To the best of the authors’ knowledge, this work enhances the state of the art in the
following respects:

1. The method of measuring nitrate concentration in soil based on the combination of
EIS with LSTM networks is characterized for the first time.

2. The advantage of a new feature selection method over conventional methods, es-
pecially random forest, is demonstrated for the first time, the advantage being a
higher coefficient of determination between the actual nitrate concentration and the
concentration predicted by the LSTM network fed with the selected features.

3. The results presented improve the quantitative understanding of the potential of
the described approach in the context of the low-cost, robust, fast, in situ, and soil
property-independent measurement of nitrate concentrations in soils.
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2. Materials and Methods

As material under test (MUT), dry quartz sand from Karl Inzelsberger Sand and
Kaolinwerk in Creußen, Germany, prepared with six different nitrate-N concentrations,
viz., 0, 2, 4, 6, 8, and 10 mg/kg, was used as synthetic soil. These nitrate-N concentrations
are below the recommended levels of 20 to 40 mg/kg in soils depending on crop [42]. A
total of 500 g of pure quartz sand was enriched in a beaker with sodium nitrate solutions
prepared according to international standards [2]. After mixing and drying, the sand–nitrate
mixture was examined at different water contents (the deionized water concentrations were
between 0 and 150 g/kg). The water content here is the ratio of the mass of water and mass
of dry mixture. Dry mixture mass is expressed by the mass of mixture dried (up to the
constant weight) at 105 ◦C. In agriculture, the mass water content is not used frequently
but a necessary step for the measurement of volumetric water content with gravimetric
methods, as will be seen later. In the field, the volumetric water and nitrate-N contents
offer more information about the ratio of pores filled with water and make it easier to
calculate the quantity of water and nitrate in an area. Thus, the above-mentioned water
and nitrate-N mass contents were converted to volumetric contents by:

θW =
mW

V
=

mS ·ωW

V
= ρS ·ωW (1)

θN =
mN

V
=

mS ·ωN

V
= ρS ·ωN (2)

where θW and θN, respectively, are the volumetric water and nitrate-N contents,ωW and
ωN are the corresponding mass contents, mW, mN and mS are the masses of water, nitrate-N,
and sand in the measurement volume V, and ρS is the density of dry sand in the measuring
cell. Obviously, even when the mass content remains constant, the vol–metric content
can vary.

To investigate various synthetic soil mixtures, the measuring cell shown in Figure 2
was used. As polytetrafluoroethylene (PTFE) is a high-temperature-resistant non-wetting
material and stainless steel is stable to nitrate solutions, the measuring cell consists of
two opposing square plates made of PTFE with a side length of 15 cm and two circular
stainless-steel electrodes with a diameter of 13 cm centered in them, forming a plate
capacitor with an electrode spacing of 1 cm. Both plates are removable so they can be easily
cleaned after each measurement of the previous sample. The MUTs were filled into the
space bit by bit between the electrodes until the material was flush with the top edge of the
measuring cell. Care was taken to keep the bulk density as planned.
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The impedance Z = |Z|ejϕ = R+ jX was measured over a frequency range from 20 Hz
to 5 kHz using an Agilent E4980A impedance meter (98 measurement points per frequency
sweep). For electrochemical systems, lower frequencies (as low as 1 mHz) would provide
more information but would also take more time for the measurement. Therefore, as we
are interested in fast measurements over larger areas (agricultural fields), we restricted the
frequency to values above 20 Hz. At each frequency, both the apparent impedance |Z|
and the impedance phase ϕ were recorded and then evaluated in Matlab R2021a. Each
MUT was repeatedly measured 20 times.

Figure 3a shows the measured frequency-dependent conductance G = Re{Y } =
Re{1/Z} as a function of nitrate-N and water concentrations. G increases with increasing
nitrate-N and water contents, the nitrate-N sensitivity being significantly greater than
the moisture sensitivity. This demonstrates the potential for monitoring the nitrate-N
concentration in soil with water as influence quantity, but also emphasizes the need for
prior calibration.
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Likewise, Figure 3b shows the measured frequency-dependent susceptance B =
Im{Y } = Im{1/Z} as a function of nitrate-N and water concentrations. In the low-
frequency region from 20 Hz to 1 kHz, B increases with increasing nitrate-N and water
contents. This can be explained by the electrical double-layer effect, which is strongly
related to the ion concentration [15]. It may provide a possibility to monitor the nitrate-N
concentration at low frequencies.

The data in Figure 3 suggest that the designed impedance sensor can measure the
nitrate-N concentration, possibly with prior calibration and possibly in the field (rather
than the laboratory). As calibrations to take into account specific soil types and water
content are likely to require too much time and effort, we looked for ways to remove the
need for calibration. The reasoning is about the following: impedance spectra contain an
abundance of signal features. This richness of information should allow one to estimate
both analyte concentrations and influence quantity values (soil density, water content, etc.).
The estimation must be automated, which calls for a machine learning algorithm.

Before the analysis using machine learning, it is an important step to prepare data,
which involves reformatting data, making corrections to data and enriching data. The raw
data sampled from our experiments consist of measured impedances Z( f ) (2520 spectra
from 126 synthetic soils compositions, each spectrum comprising 98 discrete frequencies)
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and physical properties of soils for each sand composition (density ρb, volumetric water
content θw). The measured impedance was transformed into conductance G and suscep-
tance B to provide a better view of the electrochemical changes in the measuring cell. As
shown in Figure 3, G and B are functions of frequency and the derivatives of them may
contain useful information. Therefore discrete approximations of dB/d f , dG/d f , d2B/d f 2,
and d2G/d f 2 as additional features are added to test whether they can facilitate the machine
learning. As LSTM RNN process sequences of data, the features passed to it were G and B
(vectors of length 98), ρb · a and θw · a (where a = (1, 1, . . . , 1)T is a size-98 column vector
of 1s), and the derivatives just discussed (also padded to a length of 98). The padding of
the scalars or shorter vectors to the length of the impedance spectrum (98) does not add
information but is needed to pass data to all neurons of the RNN input layer. The features
passed to RF were frequency-discrete. Before passing the features, they were centered and
scaled to have zero mean and unity standard deviation.

3. Results
3.1. Feature Selection

In the following, feature selection by RF and by a newly developed method based on
LSTM is evaluated with respect to the requirements for nitrate concentration measurement.

3.1.1. Feature Selection by Random Forest

RF provides estimates both of the association between various features and of the
feature importance. The association and importance of the eight features available in
this work are respectively presented in Figure 4a,b. The importance was calculated using
permutation importance as metric.
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Figure 4a confirms that the association between distinct features is small, which
indicates that the features are independent. The bar graph in Figure 4b reveals that the
conductance G is the most important feature, followed by the volumetric water content
θw and the soil density ρb. Other features have but a negligible effect on the nitrate
concentration estimation. Similar results have been obtained with the sequential feature
selection method combined with a support vector machine.

3.1.2. Feature Selection by Sequential Forward Selection (SFS) Based on LSTM

Since feature selection with RF does not consider the dependencies between different
frequency points, it may not provide the optimal result when training LSTM RNN. We
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therefore developed a new feature selection method combining SFS with LSTM to select
proper features of impedance spectra and their derivatives.

SFS selects features sequentially based on a criterion to be minimized over all feasible
feature subsets. In our case, the validation root mean square error (RMSE) of the LSTM
network output was used as criterion. In SFS the features are sequentially added to an
empty candidate set until the addition of further features no longer improves (i.e., decreases)
the RMSE by more than a preselected minimum value, set to 0.1 mg/L in the given context.

The difficulty of using the RMSE of the LSTM output as a criterion for SFS is that the
optimum hyperparameters of the LSTM network vary with the feature subsets. To solve
this problem, Bayesian hyperparameter optimization was used to find out the optimum
hyperparameters for the LSTM RNNs of all feature subsets. Bayesian optimization calcu-
lates the optimum hyperparameters in a specified range of values and uses a metric (in
our case, the RMSE of the LSTM RNNs) to optimize. In this way, not only the optimum
hyperparameters are determined, but also the RMSE for the SFS process. For every subset,
an LSTM RNN with optimized hyperparameters and minimized RMSE was trained. The
one feature that decreases the RMSE most at each step is retained in the further process.

The main structure of an LSTM RNN is shown in Figure 5. A dropout layer after each
LSTM layer is used to avoid overfitting. The dense layers are to reduce the dimension of
the output from previous layers to provide a smooth transition from the hidden layers to
the output layer. The ReLulayer just before the output ensures a non-negative output.
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The hyperparameters listed in Table 1 were optimized inside predefined intervals.
The feature selection results with SFS based on LSTM, the optimal hyperparameters for
each step are presented in Table 2. The whole feature selection time for step 1 through
step 4, shown in the table, took 32.8 h on a workstation with a 3.7 GHz quad core and a
memory of 64 GB. In the first step, the susceptance B decreases the RMSE most and thus is
the most important feature for a successful LSTM estimator. Adding the volumetric water
content θw decreases the RMSE more than the remaining features. Similarly, the third and
fourth most important features are the conductance G and the soil density ρb. Adding other
features had no appreciable effect on the target criterion. In particular, the first and second
derivatives of G and B are not needed to estimate nitrate concentrations in soils.

Table 1. Hyperparameters to be optimized using Bayesian optimization with predefined parameter
ranges.

No. of
Hyperparameter Description Range Type

1 Number of LSTM
layers, N 1 . . . 3 Integer

2 Numbers of neurons
in each hidden layer (1 . . . 100) × N Integer × N

3 miniBatchSize 1 2 . . . 20 Integer
4 initialLearnRate 1 10−3 . . . 10−1 Real

1 Nomenclature of MATLAB R2021a Deep Learning Toolbox.



Sensors 2023, 23, 2172 9 of 14

Table 2. Results of feature selection by SFS with the validation RMSE of the LSTM output as criterion
to be minimized.

Step Features
Validation RMSE,

in mg/L

Optimum Value of Hyperparameter
No. (cf. Table 1)

1 2 3 4

1 B 2.1920 2 (25,75) 18 0.005
2 B and θw 1.2364 2 (60,12) 16 0.007
3 B, θw, and G 0.6873 2 (89,99) 12 0.001
4 B, θw, G, and ρb 0.1431 2 (77,45) 16 0.001

3.1.3. Comparison

One notices that the feature selection results from RF on the one hand and SFS based
on LSTM on the other hand are not compatible. The most important feature according to
the latter, the susceptance B, had little or no effect according to the former. Conversely, the
most important feature by RF, the conductance G (cf. Figure 4), is only ranked third by SFS.
Both selection methods assessed the volumetric water content as crucial and soil density as
less important. The reason for the differences in feature ranking and the consequences for
the nitrate concentration measurement accuracy are discussed below.

3.2. Experimental Results for Nitrate Concentration Measurement

In order to quantify the influence of the features on the estimation accuracy, the feature
selection results were validated by the regression models from their own algorithms. The
regression models built from RF take an input vector containing the measured quantities
at one specific frequency as well as the numerical value of said frequency. When building
regression models from RF and LSTM RNNs, our impedance measurements provided
2520 spectra. They were split into training and validation data in the ratio of 80:20. After the
training, the models were tested using 360 spectra unused up to this point. Both algorithms
took less than 10 min to train regression models and the inference times for both were
around one second. The quality of the prediction results was judged by the coefficient of
determination between true and estimated nitrate-N concentration, defined as:

R2 = 1−
∑
i
(Ytest−i −Ypre−i)

2

∑
i
(Ytest−i −Ytest)

2 (3)

Here, i is the case index, Ytest−i and Ypre−i are the actual and predicted nitrate-N concentra-
tions of the test data, respectively. Ytest is the mean of the actual concentration.

Figures 6 and 7 illustrate the quality of the nitrate-N concentration estimation by the
various neural networks with different feature subsets. Using but one feature (the RF-
favored conductance spectrum G or the SFS-favored susceptance spectrum B, respectively),
one obtains results between rather unconvincing, Figure 6a, and quite good, Figure 7a.
Adding other features step by step, as suggested by Figure 4b and Table 2, respectively,
improved the estimation accuracy monotonically. In all cases, the LSTM estimator based on
SFS performed better than the RF estimator, although the differences tend to become smaller,
the more features are passed to the estimators. The optimum feature combination turned
out to be B, θw, and G (in other words: the full complex impedance spectrum Z enhanced
by the additional information θw). This feature set led to an excellent measurement result
with R2 = 0.95, Figure 7c, which could not be improved further by adding more features,
such as soil density ρb, Figure 7d. The additional features might prove helpful for the
generalization of this approach to other soils, which was not part of this work.
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Figure 6. Nitrate-N concentrations predicted by RF-built regression models from measured
impedance spectra of synthetic soil samples plus selected other physical variables. (a) Results
based on the conductance spectrum G as feature. (b) Results with features G and θw. (c) Results with
features G, θw, and ρb. (d) Results with features G, θw, ρb, and B. Blue dots: estimation results for
each of the 360 validation data sets. Straight lines: goal (predicted value = actual value). The R2

values shown in each chart are the coefficients of determination.

It is obvious that the RF-selected features are not the optimal choice for the LSTM
RNN. In fact, a regression LSTM RNN trained with the top three RF-favored features (G, θw,
and ρb) resulted in a coefficient of dermination of only R2 = 0.82 instead of R2 = 0.95. Both
feature selection methods work well with regression models based on their own algorithms,
but cannot be used interchangeably. This implies that a feature selection method based on
point data, such as RF, may not be optimal for regression models based on vector-valued
input data with dependencies between the vector elements (time or frequency series).
With respect to our impedances, such a behavior is already noticeable in Figure 3. There
is an unambiguous relationship between the measured conductance G and the nitrate
concentration at all frequencies, Figure 3a. In contrast, the susceptance B depends less
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and less on nitrate concentration with increasing frequency (and in practice, measurement
errors would prevent one from determining nitrate concentration from high-frequency
susceptance). However, the LSTM method takes the whole frequency spectrum as input,
and as B(f ) depends more strongly on f than G(f ) and thus contains more information as
sequence input, LSTM can estimate the nitrate concentration better from B than from G and
better than the RF-based regression model.
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Figure 7. Nitrate-N concentrations predicted by LSTM-built regression models from measured
impedance spectra of synthetic soil samples plus selected other physical variables. (a) Results based
on the susceptance spectrum B as feature. (b) Results with features B and θw. (c) Results with features
B, θw, and ρb. (d) Results with features B, θw, ρb, and G. Blue dots: estimation results for each of the
360 validation data sets. Straight lines: goal (predicted value = actual value). The R2 values shown in
each chart are the coefficients of determination between true and estimated concentrations.

3.3. Literature Comparison

As discussed in the introduction, the result in [25] using EIS with effective-media
models is less satisfying because of the dependency on soil conditions. In addition, the
measuring range of nitrate-N is from 14 mg/L to 70 mg/L which can hardly meet the
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field requirements. Another attempt was made to monitor the nitrate concentration in
soils in situ without pretreatment using spectrophotometry in [45]. This system is strongly
dependent on the water content in the soil and is not able to measure the nitrate over
large area. Moreover, the measuring range of nitrate-N used in [45] is from 0 to 500 ppm,
which is far beyond the field requirements. Through comparison, our work shows the best
possibilities to overcome these problems. We hope to develop a system based on it that can
be mounted on a tractor and allow measurements across large agriculture areas.

4. Conclusions

Based on synthetic soil samples, we have demonstrated that machine learning meth-
ods can extract nitrate-N concentrations in soil from measured impedance spectra enhanced
by selected additional physical variables with errors that are compatible with field require-
ments, and the demonstrated measurement accuracy was far below the recommended
nitrate-N concentration in soils.

It was also shown that proper feature selection yields objective figures of merit for the
impact of different features. Based on this, one can design RNNs that estimate the nitrate
concentration in soils robustly and accurately against the influence of water content and
soil density. Feature selection by SFS based on LSTM improved the nitrate concentration
estimation accuracy of an LSTM RNN to R2 = 0.95, which is better than the values
obtained by more common feature selection. This result was obtained when the complete
complex impedance spectrum and the water content of the soil were passed as input data
to the neural network. Adding the soil density as additional input data did not improve
the prediction quality any further. Therefore, in practice, soil density is not expected to
influence field measurements significantly.

Of course, in the field one will be faced with many types of soil (not just sandy
as in our experiments) and with additional influence quantities. Our further goal is to
conduct more experiments to expand the measuring range and include more soil types,
such as potting soils, brown soils, and clay mixtures. In this way, we hope to implement a
method based on machine learning that is capable of measuring nitrate-N concentrations
virtually independently of soil properties and types. True field measurements cannot
rely on bulky and expensive laboratory equipment but will require application-specific
printed-circuit-board impedance meters.
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